|
|
|
import copy |
|
from typing import Dict, List, Tuple |
|
from torch import Tensor |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmcv.cnn import Linear |
|
from mmcv.ops.nms import nms |
|
from mmengine.model import bias_init_with_prob, constant_init |
|
from mmengine.structures import InstanceData |
|
|
|
from mmdet.registry import MODELS |
|
from mmdet.structures import SampleList |
|
from mmdet.structures.bbox import bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh |
|
from mmdet.utils import InstanceList, OptInstanceList, reduce_mean |
|
from ..utils import multi_apply |
|
from ..layers import inverse_sigmoid |
|
from .detr_head import DETRHead |
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn import Transformer |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def adjust_bbox_to_pixel(bboxes: Tensor): |
|
|
|
adjusted_bboxes = torch.round(bboxes) |
|
return adjusted_bboxes |
|
|
|
|
|
|
|
class SiameseClassifier(nn.Module): |
|
def __init__(self, embed_dims, num_references=5): |
|
super(SiameseClassifier, self).__init__() |
|
self.embed_dims = embed_dims |
|
self.num_references = num_references |
|
self.out_features = self.num_references |
|
self.transformer = nn.TransformerEncoder( |
|
nn.TransformerEncoderLayer(d_model=embed_dims, nhead=1), |
|
num_layers=1 |
|
) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(embed_dims, 256), |
|
nn.LeakyReLU(), |
|
nn.Linear(256, 256), |
|
nn.LeakyReLU(), |
|
nn.Linear(256, embed_dims) |
|
) |
|
self.out = nn.ModuleList([nn.Linear(embed_dims, 1 ) for _ in range(num_references)]) |
|
for layer in self.out: |
|
layer.bias.data.fill_(bias_init_with_prob(0.01)) |
|
|
|
|
|
self.references = nn.Parameter(torch.randn(num_references, embed_dims)) |
|
|
|
def forward(self, x): |
|
batch_size = x.size(0) |
|
sample_num = x.size(1) |
|
|
|
references = self.references.unsqueeze(0) |
|
|
|
|
|
|
|
|
|
|
|
x_transformed = self.mlp(x.reshape(-1, self.embed_dims)).reshape(batch_size,sample_num, -1) |
|
references_transformed = self.mlp(references) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
references_transformed_expanded = references_transformed.unsqueeze(1).expand(batch_size,sample_num, |
|
-1, -1).unsqueeze(-1) |
|
x_transformed = x_transformed.unsqueeze(2).expand(-1, -1, self.out_features, -1).unsqueeze(-1) |
|
concatenated = torch.cat([x_transformed, references_transformed_expanded], dim=4) |
|
concatenated = torch.mean(concatenated, dim=4) |
|
|
|
outputs = [] |
|
for i in range(self.out_features): |
|
output = self.out[i](concatenated[:,:,i,:].reshape(-1,concatenated.size(3))) |
|
outputs.append(output.view(batch_size,-1,1)) |
|
output = torch.cat(outputs, dim=2) |
|
|
|
|
|
|
|
|
|
|
|
return output |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@MODELS.register_module() |
|
class DINOSiamClsHead(DETRHead): |
|
r"""Head of the DINO: DETR with Improved DeNoising Anchor Boxes |
|
for End-to-End Object Detection |
|
|
|
Code is modified from the `official github repo |
|
<https://github.com/IDEA-Research/DINO>`_. |
|
|
|
More details can be found in the `paper |
|
<https://arxiv.org/abs/2203.03605>`_ . |
|
""" |
|
def __init__(self, |
|
*args, |
|
share_pred_layer: bool = False, |
|
num_pred_layer: int = 6, |
|
as_two_stage: bool = False, |
|
siamese_cls: bool = False, |
|
**kwargs) -> None: |
|
self.share_pred_layer = share_pred_layer |
|
self.num_pred_layer = num_pred_layer |
|
self.as_two_stage = as_two_stage |
|
self.siamese_cls = siamese_cls |
|
|
|
super().__init__(*args, **kwargs) |
|
|
|
def _init_layers(self) -> None: |
|
"""Initialize classification branch and regression branch of head.""" |
|
|
|
|
|
fc_cls = SiameseClassifier(self.embed_dims, self.cls_out_channels) |
|
reg_branch = [] |
|
for _ in range(self.num_reg_fcs): |
|
reg_branch.append(Linear(self.embed_dims, self.embed_dims)) |
|
reg_branch.append(nn.ReLU()) |
|
reg_branch.append(Linear(self.embed_dims, 4)) |
|
reg_branch = nn.Sequential(*reg_branch) |
|
|
|
if self.share_pred_layer: |
|
self.cls_branches = nn.ModuleList( |
|
[fc_cls for _ in range(self.num_pred_layer)]) |
|
self.reg_branches = nn.ModuleList( |
|
[reg_branch for _ in range(self.num_pred_layer)]) |
|
else: |
|
self.cls_branches = nn.ModuleList( |
|
[copy.deepcopy(fc_cls) for _ in range(self.num_pred_layer)]) |
|
self.reg_branches = nn.ModuleList([ |
|
copy.deepcopy(reg_branch) for _ in range(self.num_pred_layer) |
|
]) |
|
|
|
|
|
def init_weights(self) -> None: |
|
"""Initialize weights of the Deformable DETR head.""" |
|
|
|
|
|
|
|
|
|
|
|
for m in self.reg_branches: |
|
constant_init(m[-1], 0, bias=0) |
|
nn.init.constant_(self.reg_branches[0][-1].bias.data[2:], -2.0) |
|
if self.as_two_stage: |
|
for m in self.reg_branches: |
|
nn.init.constant_(m[-1].bias.data[2:], 0.0) |
|
|
|
def forward(self, hidden_states: Tensor, |
|
references: List[Tensor]) -> Tuple[Tensor]: |
|
"""Forward function. |
|
|
|
Args: |
|
hidden_states (Tensor): Hidden states output from each decoder |
|
layer, has shape (num_decoder_layers, bs, num_queries, dim). |
|
references (list[Tensor]): List of the reference from the decoder. |
|
The first reference is the `init_reference` (initial) and the |
|
other num_decoder_layers(6) references are `inter_references` |
|
(intermediate). The `init_reference` has shape (bs, |
|
num_queries, 4) when `as_two_stage` of the detector is `True`, |
|
otherwise (bs, num_queries, 2). Each `inter_reference` has |
|
shape (bs, num_queries, 4) when `with_box_refine` of the |
|
detector is `True`, otherwise (bs, num_queries, 2). The |
|
coordinates are arranged as (cx, cy) when the last dimension is |
|
2, and (cx, cy, w, h) when it is 4. |
|
|
|
Returns: |
|
tuple[Tensor]: results of head containing the following tensor. |
|
|
|
- all_layers_outputs_classes (Tensor): Outputs from the |
|
classification head, has shape (num_decoder_layers, bs, |
|
num_queries, cls_out_channels). |
|
- all_layers_outputs_coords (Tensor): Sigmoid outputs from the |
|
regression head with normalized coordinate format (cx, cy, w, |
|
h), has shape (num_decoder_layers, bs, num_queries, 4) with the |
|
last dimension arranged as (cx, cy, w, h). |
|
""" |
|
all_layers_outputs_classes = [] |
|
all_layers_outputs_coords = [] |
|
|
|
for layer_id in range(hidden_states.shape[0]): |
|
reference = inverse_sigmoid(references[layer_id]) |
|
|
|
hidden_state = hidden_states[layer_id] |
|
outputs_class = self.cls_branches[layer_id](hidden_state) |
|
tmp_reg_preds = self.reg_branches[layer_id](hidden_state) |
|
if reference.shape[-1] == 4: |
|
|
|
|
|
|
|
tmp_reg_preds += reference |
|
else: |
|
|
|
|
|
|
|
assert reference.shape[-1] == 2 |
|
tmp_reg_preds[..., :2] += reference |
|
outputs_coord = tmp_reg_preds.sigmoid() |
|
all_layers_outputs_classes.append(outputs_class) |
|
all_layers_outputs_coords.append(outputs_coord) |
|
|
|
|
|
|
|
all_layers_outputs_classes = torch.stack(all_layers_outputs_classes) |
|
all_layers_outputs_coords = torch.stack(all_layers_outputs_coords) |
|
|
|
return all_layers_outputs_classes, all_layers_outputs_coords |
|
|
|
def loss(self, hidden_states: Tensor, references: List[Tensor], |
|
enc_outputs_class: Tensor, enc_outputs_coord: Tensor, |
|
batch_data_samples: SampleList, dn_meta: Dict[str, int]) -> dict: |
|
"""Perform forward propagation and loss calculation of the detection |
|
head on the queries of the upstream network. |
|
|
|
Args: |
|
hidden_states (Tensor): Hidden states output from each decoder |
|
layer, has shape (num_decoder_layers, bs, num_queries_total, |
|
dim), where `num_queries_total` is the sum of |
|
`num_denoising_queries` and `num_matching_queries` when |
|
`self.training` is `True`, else `num_matching_queries`. |
|
references (list[Tensor]): List of the reference from the decoder. |
|
The first reference is the `init_reference` (initial) and the |
|
other num_decoder_layers(6) references are `inter_references` |
|
(intermediate). The `init_reference` has shape (bs, |
|
num_queries_total, 4) and each `inter_reference` has shape |
|
(bs, num_queries, 4) with the last dimension arranged as |
|
(cx, cy, w, h). |
|
enc_outputs_class (Tensor): The score of each point on encode |
|
feature map, has shape (bs, num_feat_points, cls_out_channels). |
|
enc_outputs_coord (Tensor): The proposal generate from the |
|
encode feature map, has shape (bs, num_feat_points, 4) with the |
|
last dimension arranged as (cx, cy, w, h). |
|
batch_data_samples (list[:obj:`DetDataSample`]): The Data |
|
Samples. It usually includes information such as |
|
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
|
|
Returns: |
|
dict: A dictionary of loss components. |
|
""" |
|
batch_gt_instances = [] |
|
batch_img_metas = [] |
|
for data_sample in batch_data_samples: |
|
batch_img_metas.append(data_sample.metainfo) |
|
batch_gt_instances.append(data_sample.gt_instances) |
|
|
|
outs = self(hidden_states, references) |
|
loss_inputs = outs + (enc_outputs_class, enc_outputs_coord, |
|
batch_gt_instances, batch_img_metas, dn_meta) |
|
losses = self.loss_by_feat(*loss_inputs) |
|
return losses |
|
|
|
def loss_by_feat( |
|
self, |
|
all_layers_cls_scores: Tensor, |
|
all_layers_bbox_preds: Tensor, |
|
enc_cls_scores: Tensor, |
|
enc_bbox_preds: Tensor, |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
dn_meta: Dict[str, int], |
|
batch_gt_instances_ignore: OptInstanceList = None |
|
) -> Dict[str, Tensor]: |
|
"""Loss function. |
|
|
|
Args: |
|
all_layers_cls_scores (Tensor): Classification scores of all |
|
decoder layers, has shape (num_decoder_layers, bs, |
|
num_queries_total, cls_out_channels), where |
|
`num_queries_total` is the sum of `num_denoising_queries` |
|
and `num_matching_queries`. |
|
all_layers_bbox_preds (Tensor): Regression outputs of all decoder |
|
layers. Each is a 4D-tensor with normalized coordinate format |
|
(cx, cy, w, h) and has shape (num_decoder_layers, bs, |
|
num_queries_total, 4). |
|
enc_cls_scores (Tensor): The score of each point on encode |
|
feature map, has shape (bs, num_feat_points, cls_out_channels). |
|
enc_bbox_preds (Tensor): The proposal generate from the encode |
|
feature map, has shape (bs, num_feat_points, 4) with the last |
|
dimension arranged as (cx, cy, w, h). |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
|
|
(all_layers_matching_cls_scores, all_layers_matching_bbox_preds, |
|
all_layers_denoising_cls_scores, all_layers_denoising_bbox_preds) = \ |
|
self.split_outputs( |
|
all_layers_cls_scores, all_layers_bbox_preds, dn_meta) |
|
|
|
loss_dict = super().loss_by_feat( |
|
all_layers_matching_cls_scores, all_layers_matching_bbox_preds, |
|
batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) |
|
|
|
|
|
|
|
|
|
|
|
if enc_cls_scores is not None: |
|
|
|
|
|
enc_loss_cls, enc_losses_bbox, enc_losses_iou = \ |
|
self.loss_by_feat_single( |
|
enc_cls_scores, enc_bbox_preds, |
|
batch_gt_instances=batch_gt_instances, |
|
batch_img_metas=batch_img_metas) |
|
loss_dict['enc_loss_cls'] = enc_loss_cls |
|
loss_dict['enc_loss_bbox'] = enc_losses_bbox |
|
loss_dict['enc_loss_iou'] = enc_losses_iou |
|
|
|
if all_layers_denoising_cls_scores is not None: |
|
|
|
dn_losses_cls, dn_losses_bbox, dn_losses_iou = self.loss_dn( |
|
all_layers_denoising_cls_scores, |
|
all_layers_denoising_bbox_preds, |
|
batch_gt_instances=batch_gt_instances, |
|
batch_img_metas=batch_img_metas, |
|
dn_meta=dn_meta) |
|
|
|
loss_dict['dn_loss_cls'] = dn_losses_cls[-1] |
|
loss_dict['dn_loss_bbox'] = dn_losses_bbox[-1] |
|
loss_dict['dn_loss_iou'] = dn_losses_iou[-1] |
|
for num_dec_layer, (loss_cls_i, loss_bbox_i, loss_iou_i) in \ |
|
enumerate(zip(dn_losses_cls[:-1], dn_losses_bbox[:-1], |
|
dn_losses_iou[:-1])): |
|
loss_dict[f'd{num_dec_layer}.dn_loss_cls'] = loss_cls_i |
|
loss_dict[f'd{num_dec_layer}.dn_loss_bbox'] = loss_bbox_i |
|
loss_dict[f'd{num_dec_layer}.dn_loss_iou'] = loss_iou_i |
|
return loss_dict |
|
|
|
def loss_dn(self, all_layers_denoising_cls_scores: Tensor, |
|
all_layers_denoising_bbox_preds: Tensor, |
|
batch_gt_instances: InstanceList, batch_img_metas: List[dict], |
|
dn_meta: Dict[str, int]) -> Tuple[List[Tensor]]: |
|
"""Calculate denoising loss. |
|
|
|
Args: |
|
all_layers_denoising_cls_scores (Tensor): Classification scores of |
|
all decoder layers in denoising part, has shape ( |
|
num_decoder_layers, bs, num_denoising_queries, |
|
cls_out_channels). |
|
all_layers_denoising_bbox_preds (Tensor): Regression outputs of all |
|
decoder layers in denoising part. Each is a 4D-tensor with |
|
normalized coordinate format (cx, cy, w, h) and has shape |
|
(num_decoder_layers, bs, num_denoising_queries, 4). |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
|
|
Returns: |
|
Tuple[List[Tensor]]: The loss_dn_cls, loss_dn_bbox, and loss_dn_iou |
|
of each decoder layers. |
|
""" |
|
return multi_apply( |
|
self._loss_dn_single, |
|
all_layers_denoising_cls_scores, |
|
all_layers_denoising_bbox_preds, |
|
batch_gt_instances=batch_gt_instances, |
|
batch_img_metas=batch_img_metas, |
|
dn_meta=dn_meta) |
|
|
|
def _loss_dn_single(self, dn_cls_scores: Tensor, dn_bbox_preds: Tensor, |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
dn_meta: Dict[str, int]) -> Tuple[Tensor]: |
|
"""Denoising loss for outputs from a single decoder layer. |
|
|
|
Args: |
|
dn_cls_scores (Tensor): Classification scores of a single decoder |
|
layer in denoising part, has shape (bs, num_denoising_queries, |
|
cls_out_channels). |
|
dn_bbox_preds (Tensor): Regression outputs of a single decoder |
|
layer in denoising part. Each is a 4D-tensor with normalized |
|
coordinate format (cx, cy, w, h) and has shape |
|
(bs, num_denoising_queries, 4). |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
|
|
Returns: |
|
Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and |
|
`loss_iou`. |
|
""" |
|
cls_reg_targets = self.get_dn_targets(batch_gt_instances, |
|
batch_img_metas, dn_meta) |
|
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, |
|
num_total_pos, num_total_neg) = cls_reg_targets |
|
labels = torch.cat(labels_list, 0) |
|
label_weights = torch.cat(label_weights_list, 0) |
|
bbox_targets = torch.cat(bbox_targets_list, 0) |
|
bbox_weights = torch.cat(bbox_weights_list, 0) |
|
|
|
|
|
cls_scores = dn_cls_scores.reshape(-1, self.cls_out_channels) |
|
|
|
cls_avg_factor = \ |
|
num_total_pos * 1.0 + num_total_neg * self.bg_cls_weight |
|
if self.sync_cls_avg_factor: |
|
cls_avg_factor = reduce_mean( |
|
cls_scores.new_tensor([cls_avg_factor])) |
|
cls_avg_factor = max(cls_avg_factor, 1) |
|
|
|
if len(cls_scores) > 0: |
|
loss_cls = self.loss_cls( |
|
cls_scores, labels, label_weights, avg_factor=cls_avg_factor) |
|
else: |
|
loss_cls = torch.zeros( |
|
1, dtype=cls_scores.dtype, device=cls_scores.device) |
|
|
|
|
|
|
|
num_total_pos = loss_cls.new_tensor([num_total_pos]) |
|
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item() |
|
|
|
|
|
factors = [] |
|
for img_meta, bbox_pred in zip(batch_img_metas, dn_bbox_preds): |
|
img_h, img_w = img_meta['img_shape'] |
|
factor = bbox_pred.new_tensor([img_w, img_h, img_w, |
|
img_h]).unsqueeze(0).repeat( |
|
bbox_pred.size(0), 1) |
|
factors.append(factor) |
|
factors = torch.cat(factors) |
|
|
|
|
|
|
|
|
|
bbox_preds = dn_bbox_preds.reshape(-1, 4) |
|
bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors |
|
bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors |
|
|
|
|
|
loss_iou = self.loss_iou( |
|
bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos) |
|
|
|
|
|
loss_bbox = self.loss_bbox( |
|
bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos) |
|
return loss_cls, loss_bbox, loss_iou |
|
|
|
def get_dn_targets(self, batch_gt_instances: InstanceList, |
|
batch_img_metas: dict, dn_meta: Dict[str, |
|
int]) -> tuple: |
|
"""Get targets in denoising part for a batch of images. |
|
|
|
Args: |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
|
|
Returns: |
|
tuple: a tuple containing the following targets. |
|
|
|
- labels_list (list[Tensor]): Labels for all images. |
|
- label_weights_list (list[Tensor]): Label weights for all images. |
|
- bbox_targets_list (list[Tensor]): BBox targets for all images. |
|
- bbox_weights_list (list[Tensor]): BBox weights for all images. |
|
- num_total_pos (int): Number of positive samples in all images. |
|
- num_total_neg (int): Number of negative samples in all images. |
|
""" |
|
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, |
|
pos_inds_list, neg_inds_list) = multi_apply( |
|
self._get_dn_targets_single, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
dn_meta=dn_meta) |
|
num_total_pos = sum((inds.numel() for inds in pos_inds_list)) |
|
num_total_neg = sum((inds.numel() for inds in neg_inds_list)) |
|
return (labels_list, label_weights_list, bbox_targets_list, |
|
bbox_weights_list, num_total_pos, num_total_neg) |
|
|
|
def _get_dn_targets_single(self, gt_instances: InstanceData, |
|
img_meta: dict, dn_meta: Dict[str, |
|
int]) -> tuple: |
|
"""Get targets in denoising part for one image. |
|
|
|
Args: |
|
gt_instances (:obj:`InstanceData`): Ground truth of instance |
|
annotations. It should includes ``bboxes`` and ``labels`` |
|
attributes. |
|
img_meta (dict): Meta information for one image. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
|
|
Returns: |
|
tuple[Tensor]: a tuple containing the following for one image. |
|
|
|
- labels (Tensor): Labels of each image. |
|
- label_weights (Tensor]): Label weights of each image. |
|
- bbox_targets (Tensor): BBox targets of each image. |
|
- bbox_weights (Tensor): BBox weights of each image. |
|
- pos_inds (Tensor): Sampled positive indices for each image. |
|
- neg_inds (Tensor): Sampled negative indices for each image. |
|
""" |
|
gt_bboxes = gt_instances.bboxes |
|
gt_labels = gt_instances.labels |
|
num_groups = dn_meta['num_denoising_groups'] |
|
num_denoising_queries = dn_meta['num_denoising_queries'] |
|
num_queries_each_group = int(num_denoising_queries / num_groups) |
|
device = gt_bboxes.device |
|
|
|
if len(gt_labels) > 0: |
|
t = torch.arange(len(gt_labels), dtype=torch.long, device=device) |
|
t = t.unsqueeze(0).repeat(num_groups, 1) |
|
pos_assigned_gt_inds = t.flatten() |
|
pos_inds = torch.arange( |
|
num_groups, dtype=torch.long, device=device) |
|
pos_inds = pos_inds.unsqueeze(1) * num_queries_each_group + t |
|
pos_inds = pos_inds.flatten() |
|
else: |
|
pos_inds = pos_assigned_gt_inds = \ |
|
gt_bboxes.new_tensor([], dtype=torch.long) |
|
|
|
neg_inds = pos_inds + num_queries_each_group // 2 |
|
|
|
|
|
labels = gt_bboxes.new_full((num_denoising_queries, ), |
|
self.num_classes, |
|
dtype=torch.long) |
|
labels[pos_inds] = gt_labels[pos_assigned_gt_inds] |
|
label_weights = gt_bboxes.new_ones(num_denoising_queries) |
|
|
|
|
|
bbox_targets = torch.zeros(num_denoising_queries, 4, device=device) |
|
bbox_weights = torch.zeros(num_denoising_queries, 4, device=device) |
|
bbox_weights[pos_inds] = 1.0 |
|
img_h, img_w = img_meta['img_shape'] |
|
|
|
|
|
|
|
|
|
factor = gt_bboxes.new_tensor([img_w, img_h, img_w, |
|
img_h]).unsqueeze(0) |
|
gt_bboxes_normalized = gt_bboxes / factor |
|
gt_bboxes_targets = bbox_xyxy_to_cxcywh(gt_bboxes_normalized) |
|
bbox_targets[pos_inds] = gt_bboxes_targets.repeat([num_groups, 1]) |
|
|
|
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, |
|
neg_inds) |
|
|
|
@staticmethod |
|
def split_outputs(all_layers_cls_scores: Tensor, |
|
all_layers_bbox_preds: Tensor, |
|
dn_meta: Dict[str, int]) -> Tuple[Tensor]: |
|
"""Split outputs of the denoising part and the matching part. |
|
|
|
For the total outputs of `num_queries_total` length, the former |
|
`num_denoising_queries` outputs are from denoising queries, and |
|
the rest `num_matching_queries` ones are from matching queries, |
|
where `num_queries_total` is the sum of `num_denoising_queries` and |
|
`num_matching_queries`. |
|
|
|
Args: |
|
all_layers_cls_scores (Tensor): Classification scores of all |
|
decoder layers, has shape (num_decoder_layers, bs, |
|
num_queries_total, cls_out_channels). |
|
all_layers_bbox_preds (Tensor): Regression outputs of all decoder |
|
layers. Each is a 4D-tensor with normalized coordinate format |
|
(cx, cy, w, h) and has shape (num_decoder_layers, bs, |
|
num_queries_total, 4). |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. |
|
|
|
Returns: |
|
Tuple[Tensor]: a tuple containing the following outputs. |
|
|
|
- all_layers_matching_cls_scores (Tensor): Classification scores |
|
of all decoder layers in matching part, has shape |
|
(num_decoder_layers, bs, num_matching_queries, cls_out_channels). |
|
- all_layers_matching_bbox_preds (Tensor): Regression outputs of |
|
all decoder layers in matching part. Each is a 4D-tensor with |
|
normalized coordinate format (cx, cy, w, h) and has shape |
|
(num_decoder_layers, bs, num_matching_queries, 4). |
|
- all_layers_denoising_cls_scores (Tensor): Classification scores |
|
of all decoder layers in denoising part, has shape |
|
(num_decoder_layers, bs, num_denoising_queries, |
|
cls_out_channels). |
|
- all_layers_denoising_bbox_preds (Tensor): Regression outputs of |
|
all decoder layers in denoising part. Each is a 4D-tensor with |
|
normalized coordinate format (cx, cy, w, h) and has shape |
|
(num_decoder_layers, bs, num_denoising_queries, 4). |
|
""" |
|
num_denoising_queries = dn_meta['num_denoising_queries'] |
|
if dn_meta is not None: |
|
all_layers_denoising_cls_scores = \ |
|
all_layers_cls_scores[:, :, : num_denoising_queries, :] |
|
all_layers_denoising_bbox_preds = \ |
|
all_layers_bbox_preds[:, :, : num_denoising_queries, :] |
|
all_layers_matching_cls_scores = \ |
|
all_layers_cls_scores[:, :, num_denoising_queries:, :] |
|
all_layers_matching_bbox_preds = \ |
|
all_layers_bbox_preds[:, :, num_denoising_queries:, :] |
|
else: |
|
all_layers_denoising_cls_scores = None |
|
all_layers_denoising_bbox_preds = None |
|
all_layers_matching_cls_scores = all_layers_cls_scores |
|
all_layers_matching_bbox_preds = all_layers_bbox_preds |
|
return (all_layers_matching_cls_scores, all_layers_matching_bbox_preds, |
|
all_layers_denoising_cls_scores, |
|
all_layers_denoising_bbox_preds) |
|
|
|
def predict(self, |
|
hidden_states: Tensor, |
|
references: List[Tensor], |
|
batch_data_samples: SampleList, |
|
rescale: bool = True) -> InstanceList: |
|
"""Perform forward propagation and loss calculation of the detection |
|
head on the queries of the upstream network. |
|
|
|
Args: |
|
hidden_states (Tensor): Hidden states output from each decoder |
|
layer, has shape (num_decoder_layers, num_queries, bs, dim). |
|
references (list[Tensor]): List of the reference from the decoder. |
|
The first reference is the `init_reference` (initial) and the |
|
other num_decoder_layers(6) references are `inter_references` |
|
(intermediate). The `init_reference` has shape (bs, |
|
num_queries, 4) when `as_two_stage` of the detector is `True`, |
|
otherwise (bs, num_queries, 2). Each `inter_reference` has |
|
shape (bs, num_queries, 4) when `with_box_refine` of the |
|
detector is `True`, otherwise (bs, num_queries, 2). The |
|
coordinates are arranged as (cx, cy) when the last dimension is |
|
2, and (cx, cy, w, h) when it is 4. |
|
batch_data_samples (list[:obj:`DetDataSample`]): The Data |
|
Samples. It usually includes information such as |
|
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. |
|
rescale (bool, optional): If `True`, return boxes in original |
|
image space. Defaults to `True`. |
|
|
|
Returns: |
|
list[obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
""" |
|
batch_img_metas = [ |
|
data_samples.metainfo for data_samples in batch_data_samples |
|
] |
|
|
|
outs = self(hidden_states, references) |
|
|
|
predictions = self.predict_by_feat( |
|
*outs, batch_img_metas=batch_img_metas, rescale=rescale) |
|
return predictions |
|
|
|
def predict_by_feat(self, |
|
all_layers_cls_scores: Tensor, |
|
all_layers_bbox_preds: Tensor, |
|
batch_img_metas: List[Dict], |
|
rescale: bool = False) -> InstanceList: |
|
"""Transform a batch of output features extracted from the head into |
|
bbox results. |
|
|
|
Args: |
|
all_layers_cls_scores (Tensor): Classification scores of all |
|
decoder layers, has shape (num_decoder_layers, bs, num_queries, |
|
cls_out_channels). |
|
all_layers_bbox_preds (Tensor): Regression outputs of all decoder |
|
layers. Each is a 4D-tensor with normalized coordinate format |
|
(cx, cy, w, h) and shape (num_decoder_layers, bs, num_queries, |
|
4) with the last dimension arranged as (cx, cy, w, h). |
|
batch_img_metas (list[dict]): Meta information of each image. |
|
rescale (bool, optional): If `True`, return boxes in original |
|
image space. Default `False`. |
|
|
|
Returns: |
|
list[obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
""" |
|
cls_scores = all_layers_cls_scores[-1] |
|
bbox_preds = all_layers_bbox_preds[-1] |
|
|
|
result_list = [] |
|
for img_id in range(len(batch_img_metas)): |
|
cls_score = cls_scores[img_id] |
|
bbox_pred = bbox_preds[img_id] |
|
img_meta = batch_img_metas[img_id] |
|
results = self._predict_by_feat_single(cls_score, bbox_pred, |
|
img_meta, rescale) |
|
result_list.append(results) |
|
return result_list |
|
|
|
def _predict_by_feat_single(self, |
|
cls_score: Tensor, |
|
bbox_pred: Tensor, |
|
img_meta: dict, |
|
rescale: bool = True) -> InstanceData: |
|
"""Transform outputs from the last decoder layer into bbox predictions |
|
for each image. |
|
|
|
Args: |
|
cls_score (Tensor): Box score logits from the last decoder layer |
|
for each image. Shape [num_queries, cls_out_channels]. |
|
bbox_pred (Tensor): Sigmoid outputs from the last decoder layer |
|
for each image, with coordinate format (cx, cy, w, h) and |
|
shape [num_queries, 4]. |
|
img_meta (dict): Image meta info. |
|
rescale (bool): If True, return boxes in original image |
|
space. Default True. |
|
|
|
Returns: |
|
:obj:`InstanceData`: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
""" |
|
assert len(cls_score) == len(bbox_pred) |
|
max_per_img = self.test_cfg.get('max_per_img', len(cls_score)) |
|
img_shape = img_meta['img_shape'] |
|
|
|
if self.loss_cls.use_sigmoid: |
|
cls_score = cls_score.sigmoid() |
|
scores, indexes = cls_score.view(-1).topk(max_per_img) |
|
det_labels = indexes % self.num_classes |
|
bbox_index = indexes // self.num_classes |
|
bbox_pred = bbox_pred[bbox_index] |
|
else: |
|
scores, det_labels = F.softmax(cls_score, dim=-1)[..., :-1].max(-1) |
|
scores, bbox_index = scores.topk(max_per_img) |
|
bbox_pred = bbox_pred[bbox_index] |
|
det_labels = det_labels[bbox_index] |
|
|
|
det_bboxes = bbox_cxcywh_to_xyxy(bbox_pred) |
|
det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1] |
|
det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0] |
|
det_bboxes[:, 0::2].clamp_(min=0, max=img_shape[1]) |
|
det_bboxes[:, 1::2].clamp_(min=0, max=img_shape[0]) |
|
|
|
|
|
iou_threshold= 0.01 |
|
offset = 0 |
|
score_threshold = 0.05 |
|
max_num = 300 |
|
dets, inds = nms(det_bboxes, scores, iou_threshold, offset, score_threshold, max_num) |
|
det_bboxes = dets[:,:-1] |
|
scores = dets[:,-1] |
|
det_labels =det_labels[inds] |
|
|
|
|
|
det_bboxes = adjust_bbox_to_pixel(det_bboxes) |
|
|
|
if rescale: |
|
|
|
|
|
|
|
|
|
if img_meta.get('scale_factor') is not None: |
|
det_bboxes /= det_bboxes.new_tensor( |
|
img_meta['scale_factor']).repeat((1, 2)) |
|
results = InstanceData() |
|
results.bboxes = det_bboxes |
|
results.scores = scores |
|
results.labels = det_labels |
|
return results |
|
|
|
|
|
|
|
def loss_group(self, hidden_states: Tensor, references: List[Tensor], |
|
enc_outputs_class: Tensor, enc_outputs_coord: Tensor, |
|
batch_data_samples: SampleList, dn_meta: Dict[str, int], |
|
|
|
each_match_num_queries: int = 200, ) -> dict: |
|
"""Perform forward propagation and loss calculation of the detection |
|
head on the queries of the upstream network. |
|
|
|
Args: |
|
hidden_states (Tensor): Hidden states output from each decoder |
|
layer, has shape (num_decoder_layers, bs, num_queries_total, |
|
dim), where `num_queries_total` is the sum of |
|
`num_denoising_queries` and `num_matching_queries` when |
|
`self.training` is `True`, else `num_matching_queries`. |
|
references (list[Tensor]): List of the reference from the decoder. |
|
The first reference is the `init_reference` (initial) and the |
|
other num_decoder_layers(6) references are `inter_references` |
|
(intermediate). The `init_reference` has shape (bs, |
|
num_queries_total, 4) and each `inter_reference` has shape |
|
(bs, num_queries, 4) with the last dimension arranged as |
|
(cx, cy, w, h). |
|
enc_outputs_class (Tensor): The score of each point on encode |
|
feature map, has shape (bs, num_feat_points, cls_out_channels). |
|
enc_outputs_coord (Tensor): The proposal generate from the |
|
encode feature map, has shape (bs, num_feat_points, 4) with the |
|
last dimension arranged as (cx, cy, w, h). |
|
batch_data_samples (list[:obj:`DetDataSample`]): The Data |
|
Samples. It usually includes information such as |
|
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
|
|
Returns: |
|
dict: A dictionary of loss components. |
|
""" |
|
batch_gt_instances = [] |
|
batch_img_metas = [] |
|
for data_sample in batch_data_samples: |
|
batch_img_metas.append(data_sample.metainfo) |
|
batch_gt_instances.append(data_sample.gt_instances) |
|
|
|
outs = self(hidden_states, references) |
|
loss_inputs = outs + (enc_outputs_class, enc_outputs_coord, |
|
batch_gt_instances, batch_img_metas, dn_meta,each_match_num_queries) |
|
losses = self.loss_by_feat_group(*loss_inputs) |
|
return losses |
|
|
|
def loss_by_feat_group( |
|
self, |
|
all_layers_cls_scores: Tensor, |
|
all_layers_bbox_preds: Tensor, |
|
enc_cls_scores: Tensor, |
|
enc_bbox_preds: Tensor, |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
dn_meta: Dict[str, int], |
|
|
|
each_match_num_queries: int = 200, |
|
batch_gt_instances_ignore: OptInstanceList = None, |
|
) -> Dict[str, Tensor]: |
|
"""Loss function. |
|
|
|
Args: |
|
all_layers_cls_scores (Tensor): Classification scores of all |
|
decoder layers, has shape (num_decoder_layers, bs, |
|
num_queries_total, cls_out_channels), where |
|
`num_queries_total` is the sum of `num_denoising_queries` |
|
and `num_matching_queries`. |
|
all_layers_bbox_preds (Tensor): Regression outputs of all decoder |
|
layers. Each is a 4D-tensor with normalized coordinate format |
|
(cx, cy, w, h) and has shape (num_decoder_layers, bs, |
|
num_queries_total, 4). |
|
enc_cls_scores (Tensor): The score of each point on encode |
|
feature map, has shape (bs, num_feat_points, cls_out_channels). |
|
enc_bbox_preds (Tensor): The proposal generate from the encode |
|
feature map, has shape (bs, num_feat_points, 4) with the last |
|
dimension arranged as (cx, cy, w, h). |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
|
|
(all_layers_matching_cls_scores, all_layers_matching_bbox_preds, |
|
all_layers_denoising_cls_scores, all_layers_denoising_bbox_preds) = \ |
|
self.split_outputs( |
|
all_layers_cls_scores, all_layers_bbox_preds, dn_meta) |
|
match_group_num = all_layers_matching_cls_scores.shape[2]//each_match_num_queries |
|
loss_dict = dict() |
|
for id_group in range(match_group_num): |
|
all_layers_matching_cls_scores_one_group = all_layers_matching_cls_scores[:, :, id_group * each_match_num_queries:(id_group + 1) * each_match_num_queries, :] |
|
all_layers_matching_bbox_preds_one_group = all_layers_matching_bbox_preds[:, :, id_group * each_match_num_queries:(id_group + 1) * each_match_num_queries, :] |
|
|
|
losses_cls, losses_bbox, losses_iou = multi_apply( |
|
self.loss_by_feat_single, |
|
all_layers_matching_cls_scores_one_group, |
|
all_layers_matching_bbox_preds_one_group, |
|
batch_gt_instances=batch_gt_instances, |
|
batch_img_metas=batch_img_metas) |
|
|
|
loss_dict[f'g{id_group}.loss_cls'] = losses_cls[-1] |
|
loss_dict[f'g{id_group}.loss_bbox'] = losses_bbox[-1] |
|
loss_dict[f'g{id_group}.loss_iou'] = losses_iou[-1] |
|
|
|
num_dec_layer = 0 |
|
for loss_cls_i, loss_bbox_i, loss_iou_i in \ |
|
zip(losses_cls[:-1], losses_bbox[:-1], losses_iou[:-1]): |
|
loss_dict[f'g{id_group}d{num_dec_layer}.loss_cls'] = loss_cls_i |
|
loss_dict[f'g{id_group}d{num_dec_layer}.loss_bbox'] = loss_bbox_i |
|
loss_dict[f'g{id_group}d{num_dec_layer}.loss_iou'] = loss_iou_i |
|
num_dec_layer += 1 |
|
|
|
|
|
|
|
|
|
enc_cls_scores_one_group = enc_cls_scores[:, id_group * each_match_num_queries:(id_group + 1) * each_match_num_queries, :] |
|
enc_bbox_preds_one_group = enc_bbox_preds[:, id_group * each_match_num_queries:(id_group + 1) * each_match_num_queries, :] |
|
if enc_cls_scores is not None: |
|
|
|
|
|
enc_loss_cls, enc_losses_bbox, enc_losses_iou = \ |
|
self.loss_by_feat_single(enc_cls_scores_one_group, |
|
enc_bbox_preds_one_group, |
|
batch_gt_instances=batch_gt_instances, |
|
batch_img_metas=batch_img_metas) |
|
loss_dict[f'g{id_group}.enc_loss_cls'] = enc_loss_cls |
|
loss_dict[f'g{id_group}.enc_loss_bbox'] = enc_losses_bbox |
|
loss_dict[f'g{id_group}.enc_loss_iou'] = enc_losses_iou |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if all_layers_denoising_cls_scores is not None: |
|
|
|
dn_losses_cls, dn_losses_bbox, dn_losses_iou = self.loss_dn( |
|
all_layers_denoising_cls_scores, |
|
all_layers_denoising_bbox_preds, |
|
batch_gt_instances=batch_gt_instances, |
|
batch_img_metas=batch_img_metas, |
|
dn_meta=dn_meta) |
|
|
|
loss_dict['dn_loss_cls'] = dn_losses_cls[-1] |
|
loss_dict['dn_loss_bbox'] = dn_losses_bbox[-1] |
|
loss_dict['dn_loss_iou'] = dn_losses_iou[-1] |
|
for num_dec_layer, (loss_cls_i, loss_bbox_i, loss_iou_i) in \ |
|
enumerate(zip(dn_losses_cls[:-1], dn_losses_bbox[:-1], |
|
dn_losses_iou[:-1])): |
|
loss_dict[f'd{num_dec_layer}.dn_loss_cls'] = loss_cls_i |
|
loss_dict[f'd{num_dec_layer}.dn_loss_bbox'] = loss_bbox_i |
|
loss_dict[f'd{num_dec_layer}.dn_loss_iou'] = loss_iou_i |
|
return loss_dict |
|
|
|
def loss_ddn(self, hidden_states: Tensor, references: List[Tensor], |
|
enc_outputs_class: Tensor, enc_outputs_coord: Tensor, |
|
batch_data_samples: SampleList, dn_meta: Dict[str, int]) -> dict: |
|
"""Perform forward propagation and loss calculation of the detection |
|
head on the queries of the upstream network. |
|
|
|
Args: |
|
hidden_states (Tensor): Hidden states output from each decoder |
|
layer, has shape (num_decoder_layers, bs, num_queries_total, |
|
dim), where `num_queries_total` is the sum of |
|
`num_denoising_queries` and `num_matching_queries` when |
|
`self.training` is `True`, else `num_matching_queries`. |
|
references (list[Tensor]): List of the reference from the decoder. |
|
The first reference is the `init_reference` (initial) and the |
|
other num_decoder_layers(6) references are `inter_references` |
|
(intermediate). The `init_reference` has shape (bs, |
|
num_queries_total, 4) and each `inter_reference` has shape |
|
(bs, num_queries, 4) with the last dimension arranged as |
|
(cx, cy, w, h). |
|
enc_outputs_class (Tensor): The score of each point on encode |
|
feature map, has shape (bs, num_feat_points, cls_out_channels). |
|
enc_outputs_coord (Tensor): The proposal generate from the |
|
encode feature map, has shape (bs, num_feat_points, 4) with the |
|
last dimension arranged as (cx, cy, w, h). |
|
batch_data_samples (list[:obj:`DetDataSample`]): The Data |
|
Samples. It usually includes information such as |
|
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
|
|
Returns: |
|
dict: A dictionary of loss components. |
|
""" |
|
batch_gt_instances = [] |
|
batch_img_metas = [] |
|
for data_sample in batch_data_samples: |
|
batch_img_metas.append(data_sample.metainfo) |
|
batch_gt_instances.append(data_sample.gt_instances) |
|
|
|
outs = self(hidden_states, references) |
|
loss_inputs = outs + (enc_outputs_class, enc_outputs_coord, |
|
batch_gt_instances, batch_img_metas, dn_meta) |
|
losses,pos_bbox_offsets = self.loss_ddn_by_feat(*loss_inputs) |
|
return losses,pos_bbox_offsets |
|
|
|
def loss_ddn_by_feat( |
|
self, |
|
all_layers_cls_scores: Tensor, |
|
all_layers_bbox_preds: Tensor, |
|
enc_cls_scores: Tensor, |
|
enc_bbox_preds: Tensor, |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
dn_meta: Dict[str, int], |
|
|
|
batch_gt_instances_ignore: OptInstanceList = None, |
|
) -> Tuple[Dict[str, Tensor], List]: |
|
"""Loss function. |
|
|
|
Args: |
|
all_layers_cls_scores (Tensor): Classification scores of all |
|
decoder layers, has shape (num_decoder_layers, bs, |
|
num_queries_total, cls_out_channels), where |
|
`num_queries_total` is the sum of `num_denoising_queries` |
|
and `num_matching_queries`. |
|
all_layers_bbox_preds (Tensor): Regression outputs of all decoder |
|
layers. Each is a 4D-tensor with normalized coordinate format |
|
(cx, cy, w, h) and has shape (num_decoder_layers, bs, |
|
num_queries_total, 4). |
|
enc_cls_scores (Tensor): The score of each point on encode |
|
feature map, has shape (bs, num_feat_points, cls_out_channels). |
|
enc_bbox_preds (Tensor): The proposal generate from the encode |
|
feature map, has shape (bs, num_feat_points, 4) with the last |
|
dimension arranged as (cx, cy, w, h). |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
|
|
(all_layers_matching_cls_scores, all_layers_matching_bbox_preds, |
|
all_layers_denoising_cls_scores, all_layers_denoising_bbox_preds) = \ |
|
self.split_outputs( |
|
all_layers_cls_scores, all_layers_bbox_preds, dn_meta) |
|
loss_dict = dict() |
|
|
|
assert batch_gt_instances_ignore is None, \ |
|
f'{self.__class__.__name__} only supports ' \ |
|
'for batch_gt_instances_ignore setting to None.' |
|
|
|
losses_cls, losses_bbox, losses_iou, pos_bbox_offsets = multi_apply( |
|
self.loss_ddn_by_feat_single, |
|
all_layers_matching_cls_scores, |
|
all_layers_matching_bbox_preds, |
|
batch_gt_instances=batch_gt_instances, |
|
batch_img_metas=batch_img_metas) |
|
|
|
loss_dict['loss_cls'] = losses_cls[-1] |
|
loss_dict['loss_bbox'] = losses_bbox[-1] |
|
loss_dict['loss_iou'] = losses_iou[-1] |
|
|
|
num_dec_layer = 0 |
|
for loss_cls_i, loss_bbox_i, loss_iou_i in \ |
|
zip(losses_cls[:-1], losses_bbox[:-1], losses_iou[:-1]): |
|
loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i |
|
loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i |
|
loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i |
|
num_dec_layer += 1 |
|
|
|
|
|
|
|
|
|
|
|
if enc_cls_scores is not None: |
|
|
|
|
|
enc_loss_cls, enc_losses_bbox, enc_losses_iou, pos_bbox_offsets = \ |
|
self.loss_ddn_by_feat_single( |
|
enc_cls_scores, enc_bbox_preds, |
|
batch_gt_instances=batch_gt_instances, |
|
batch_img_metas=batch_img_metas) |
|
loss_dict['enc_loss_cls'] = enc_loss_cls |
|
loss_dict['enc_loss_bbox'] = enc_losses_bbox |
|
loss_dict['enc_loss_iou'] = enc_losses_iou |
|
|
|
if all_layers_denoising_cls_scores is not None: |
|
|
|
dn_losses_cls, dn_losses_bbox, dn_losses_iou = self.loss_dn( |
|
all_layers_denoising_cls_scores, |
|
all_layers_denoising_bbox_preds, |
|
batch_gt_instances=batch_gt_instances, |
|
batch_img_metas=batch_img_metas, |
|
dn_meta=dn_meta) |
|
|
|
loss_dict['dn_loss_cls'] = dn_losses_cls[-1] |
|
loss_dict['dn_loss_bbox'] = dn_losses_bbox[-1] |
|
loss_dict['dn_loss_iou'] = dn_losses_iou[-1] |
|
for num_dec_layer, (loss_cls_i, loss_bbox_i, loss_iou_i) in \ |
|
enumerate(zip(dn_losses_cls[:-1], dn_losses_bbox[:-1], |
|
dn_losses_iou[:-1])): |
|
loss_dict[f'd{num_dec_layer}.dn_loss_cls'] = loss_cls_i |
|
loss_dict[f'd{num_dec_layer}.dn_loss_bbox'] = loss_bbox_i |
|
loss_dict[f'd{num_dec_layer}.dn_loss_iou'] = loss_iou_i |
|
return loss_dict, pos_bbox_offsets |
|
|
|
|
|
def loss_ddn_by_feat_single(self, cls_scores: Tensor, bbox_preds: Tensor, |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict]) -> Tuple[Tensor, List]: |
|
"""Loss function for outputs from a single decoder layer of a single |
|
feature level. |
|
|
|
Args: |
|
cls_scores (Tensor): Box score logits from a single decoder layer |
|
for all images, has shape (bs, num_queries, cls_out_channels). |
|
bbox_preds (Tensor): Sigmoid outputs from a single decoder layer |
|
for all images, with normalized coordinate (cx, cy, w, h) and |
|
shape (bs, num_queries, 4). |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
|
|
Returns: |
|
Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and |
|
`loss_iou`. |
|
""" |
|
num_imgs = cls_scores.size(0) |
|
cls_scores_list = [cls_scores[i] for i in range(num_imgs)] |
|
bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)] |
|
cls_reg_targets = self.get_targets_ddn(cls_scores_list, bbox_preds_list, |
|
batch_gt_instances, batch_img_metas) |
|
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, |
|
num_total_pos, num_total_neg) = cls_reg_targets |
|
labels = torch.cat(labels_list, 0) |
|
label_weights = torch.cat(label_weights_list, 0) |
|
bbox_targets = torch.cat(bbox_targets_list, 0) |
|
bbox_weights = torch.cat(bbox_weights_list, 0) |
|
|
|
|
|
cls_scores = cls_scores.reshape(-1, self.cls_out_channels) |
|
|
|
cls_avg_factor = num_total_pos * 1.0 + \ |
|
num_total_neg * self.bg_cls_weight |
|
if self.sync_cls_avg_factor: |
|
cls_avg_factor = reduce_mean( |
|
cls_scores.new_tensor([cls_avg_factor])) |
|
cls_avg_factor = max(cls_avg_factor, 1) |
|
|
|
loss_cls = self.loss_cls( |
|
cls_scores, labels, label_weights, avg_factor=cls_avg_factor) |
|
|
|
|
|
|
|
num_total_pos = loss_cls.new_tensor([num_total_pos]) |
|
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item() |
|
|
|
|
|
factors = [] |
|
for img_meta, bbox_pred in zip(batch_img_metas, bbox_preds): |
|
img_h, img_w, = img_meta['img_shape'] |
|
factor = bbox_pred.new_tensor([img_w, img_h, img_w, |
|
img_h]).unsqueeze(0).repeat( |
|
bbox_pred.size(0), 1) |
|
factors.append(factor) |
|
factors = torch.cat(factors, 0) |
|
|
|
|
|
|
|
|
|
bbox_preds = bbox_preds.reshape(-1, 4) |
|
bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors |
|
bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors |
|
|
|
|
|
|
|
|
|
is_target = torch.any(bbox_targets != 0, dim=1) |
|
|
|
target_indices = torch.nonzero(is_target).squeeze() |
|
bbox_targets_only_pos = bbox_targets[target_indices] |
|
bbox_preds_only_pos = bbox_preds[target_indices] |
|
|
|
pos_bbox_offset = torch.mean(torch.abs(bbox_targets_only_pos-bbox_preds_only_pos),dim=0).detach().cpu().numpy() |
|
pos_bbox_offsets = [(pos_bbox_offset[0]+pos_bbox_offset[1])/2,(pos_bbox_offset[2]+pos_bbox_offset[3])/2] |
|
|
|
loss_iou = self.loss_iou( |
|
bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos) |
|
|
|
|
|
loss_bbox = self.loss_bbox( |
|
bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos) |
|
return loss_cls, loss_bbox, loss_iou, pos_bbox_offsets |
|
|
|
def get_targets_ddn(self, cls_scores_list: List[Tensor], |
|
bbox_preds_list: List[Tensor], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict]) -> tuple: |
|
"""Compute regression and classification targets for a batch image. |
|
|
|
Outputs from a single decoder layer of a single feature level are used. |
|
|
|
Args: |
|
cls_scores_list (list[Tensor]): Box score logits from a single |
|
decoder layer for each image, has shape [num_queries, |
|
cls_out_channels]. |
|
bbox_preds_list (list[Tensor]): Sigmoid outputs from a single |
|
decoder layer for each image, with normalized coordinate |
|
(cx, cy, w, h) and shape [num_queries, 4]. |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
|
|
Returns: |
|
tuple: a tuple containing the following targets. |
|
|
|
- labels_list (list[Tensor]): Labels for all images. |
|
- label_weights_list (list[Tensor]): Label weights for all images. |
|
- bbox_targets_list (list[Tensor]): BBox targets for all images. |
|
- bbox_weights_list (list[Tensor]): BBox weights for all images. |
|
- num_total_pos (int): Number of positive samples in all images. |
|
- num_total_neg (int): Number of negative samples in all images. |
|
""" |
|
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, |
|
pos_inds_list, |
|
neg_inds_list) = multi_apply(self._get_targets_single_ddn, |
|
cls_scores_list, bbox_preds_list, |
|
batch_gt_instances, batch_img_metas) |
|
num_total_pos = sum((inds.numel() for inds in pos_inds_list)) |
|
num_total_neg = sum((inds.numel() for inds in neg_inds_list)) |
|
return (labels_list, label_weights_list, bbox_targets_list, |
|
bbox_weights_list, num_total_pos, num_total_neg) |
|
|
|
def _get_targets_single_ddn(self, cls_score: Tensor, bbox_pred: Tensor, |
|
gt_instances: InstanceData, |
|
img_meta: dict) -> tuple: |
|
"""Compute regression and classification targets for one image. |
|
|
|
Outputs from a single decoder layer of a single feature level are used. |
|
|
|
Args: |
|
cls_score (Tensor): Box score logits from a single decoder layer |
|
for one image. Shape [num_queries, cls_out_channels]. |
|
bbox_pred (Tensor): Sigmoid outputs from a single decoder layer |
|
for one image, with normalized coordinate (cx, cy, w, h) and |
|
shape [num_queries, 4]. |
|
gt_instances (:obj:`InstanceData`): Ground truth of instance |
|
annotations. It should includes ``bboxes`` and ``labels`` |
|
attributes. |
|
img_meta (dict): Meta information for one image. |
|
|
|
Returns: |
|
tuple[Tensor]: a tuple containing the following for one image. |
|
|
|
- labels (Tensor): Labels of each image. |
|
- label_weights (Tensor]): Label weights of each image. |
|
- bbox_targets (Tensor): BBox targets of each image. |
|
- bbox_weights (Tensor): BBox weights of each image. |
|
- pos_inds (Tensor): Sampled positive indices for each image. |
|
- neg_inds (Tensor): Sampled negative indices for each image. |
|
""" |
|
img_h, img_w = img_meta['img_shape'] |
|
factor = bbox_pred.new_tensor([img_w, img_h, img_w, |
|
img_h]).unsqueeze(0) |
|
num_bboxes = bbox_pred.size(0) |
|
|
|
bbox_pred = bbox_cxcywh_to_xyxy(bbox_pred) |
|
bbox_pred = bbox_pred * factor |
|
|
|
pred_instances = InstanceData(scores=cls_score, bboxes=bbox_pred) |
|
|
|
assign_result = self.assigner.assign( |
|
pred_instances=pred_instances, |
|
gt_instances=gt_instances, |
|
img_meta=img_meta) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gt_bboxes = gt_instances.bboxes |
|
gt_labels = gt_instances.labels |
|
pos_inds = torch.nonzero( |
|
assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() |
|
neg_inds = torch.nonzero( |
|
assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() |
|
pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1 |
|
pos_gt_bboxes = gt_bboxes[pos_assigned_gt_inds.long(), :] |
|
|
|
|
|
labels = gt_bboxes.new_full((num_bboxes, ), |
|
self.num_classes, |
|
dtype=torch.long) |
|
labels[pos_inds] = gt_labels[pos_assigned_gt_inds] |
|
label_weights = gt_bboxes.new_ones(num_bboxes) |
|
|
|
|
|
bbox_targets = torch.zeros_like(bbox_pred) |
|
bbox_weights = torch.zeros_like(bbox_pred) |
|
bbox_weights[pos_inds] = 1.0 |
|
|
|
|
|
|
|
|
|
pos_gt_bboxes_normalized = pos_gt_bboxes / factor |
|
pos_gt_bboxes_targets = bbox_xyxy_to_cxcywh(pos_gt_bboxes_normalized) |
|
bbox_targets[pos_inds] = pos_gt_bboxes_targets |
|
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, |
|
neg_inds) |