|
|
|
import copy |
|
import os.path |
|
from typing import Dict, List, Tuple, Optional |
|
from torch import Tensor |
|
from mmcv.cnn import Linear |
|
from mmengine.model import bias_init_with_prob, constant_init |
|
from mmengine.structures import InstanceData |
|
from mmengine.model import BaseModule |
|
from mmdet.registry import MODELS |
|
from mmdet.structures import SampleList |
|
from mmdet.structures.bbox import bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh, bbox_overlaps |
|
from mmdet.utils import InstanceList, OptInstanceList, reduce_mean |
|
from ..utils import multi_apply |
|
from ..layers import inverse_sigmoid |
|
from .detr_head import DETRHead |
|
from mmdet.registry import MODELS, TASK_UTILS |
|
from mmdet.utils import (ConfigType, InstanceList, OptInstanceList,OptConfigType, |
|
OptMultiConfig, reduce_mean) |
|
from mmcv.ops import nms, batched_nms |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn import Transformer |
|
import scipy.io as sio |
|
import os |
|
from ..losses import QualityFocalLoss |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def adjust_bbox_to_pixel(bboxes: Tensor): |
|
|
|
adjusted_bboxes = torch.round(bboxes) |
|
return adjusted_bboxes |
|
|
|
@MODELS.register_module() |
|
class EvloveDetHead(BaseModule): |
|
r"""Head of the DINO: DETR with Improved DeNoising Anchor Boxes |
|
for End-to-End Object Detection |
|
|
|
Code is modified from the `official github repo |
|
<https://github.com/IDEA-Research/DINO>`_. |
|
|
|
More details can be found in the `paper |
|
<https://arxiv.org/abs/2203.03605>`_ . |
|
""" |
|
|
|
def __init__(self, |
|
num_classes: int, |
|
embed_dims: int = 256, |
|
decoder_embed_dims: int = 256, |
|
num_reg_fcs: int = 2, |
|
center_feat_indice: int=1, |
|
sync_cls_avg_factor: bool = False, |
|
use_nms: bool = False, |
|
score_threshold: float = 0.0, |
|
class_wise_nms: bool = True, |
|
test_nms: OptConfigType = dict(type='nms', iou_threshold=0.01, ), |
|
loss_cls: ConfigType = dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
loss_center_cls: ConfigType = dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
loss_bbox: ConfigType = dict(type='L1Loss', loss_weight=5.0), |
|
loss_iou: OptConfigType = None, |
|
loss_seg: ConfigType = dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
|
|
loss_abu: ConfigType = dict(type='L1Loss', loss_weight=1.0), |
|
train_cfg: ConfigType = dict( |
|
assigner=dict( |
|
type='HungarianAssigner', |
|
match_costs=[ |
|
dict(type='ClassificationCost', weight=1.), |
|
dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), |
|
dict(type='IoUCost', iou_mode='giou', weight=2.0) |
|
])), |
|
test_cfg: ConfigType = dict(max_per_img=100), |
|
init_cfg: OptMultiConfig = None, |
|
share_pred_layer: bool = False, |
|
num_pred_layer: int = 6, |
|
as_two_stage: bool = False, |
|
pre_bboxes_round: bool = True, |
|
neg_hard_num: int = 0, |
|
seg_neg_hard_num: int = 0, |
|
loss_center_th: float = 0.2, |
|
loss_iou_th: float = 0.3, |
|
center_ds_ratio: int = 1, |
|
use_center: bool = True, |
|
predict_segmentation: bool = False, |
|
predict_abundance: bool = False, |
|
save_path: Optional[str]= None, |
|
mask_threshold:float = 0.5, |
|
mask_extend_pixel: int = 2, |
|
) -> None: |
|
self.share_pred_layer = share_pred_layer |
|
self.num_pred_layer = num_pred_layer |
|
self.as_two_stage = as_two_stage |
|
self.pre_bboxes_round = pre_bboxes_round |
|
self.score_threshold = score_threshold |
|
self.loss_center_th = loss_center_th |
|
self.loss_iou_th = loss_iou_th |
|
self.center_feat_indice = center_feat_indice |
|
self.center_ds_ratio = center_ds_ratio |
|
super().__init__(init_cfg=init_cfg) |
|
self.bg_cls_weight = 0 |
|
self.sync_cls_avg_factor = sync_cls_avg_factor |
|
class_weight = loss_cls.get('class_weight', None) |
|
if class_weight is not None and (self.__class__ is DETRHead): |
|
assert isinstance(class_weight, float), 'Expected ' \ |
|
'class_weight to have type float. Found ' \ |
|
f'{type(class_weight)}.' |
|
|
|
|
|
bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight) |
|
assert isinstance(bg_cls_weight, float), 'Expected ' \ |
|
'bg_cls_weight to have type float. Found ' \ |
|
f'{type(bg_cls_weight)}.' |
|
class_weight = torch.ones(num_classes + 1) * class_weight |
|
|
|
class_weight[num_classes] = bg_cls_weight |
|
loss_cls.update({'class_weight': class_weight}) |
|
if 'bg_cls_weight' in loss_cls: |
|
loss_cls.pop('bg_cls_weight') |
|
self.bg_cls_weight = bg_cls_weight |
|
if train_cfg: |
|
assert 'assigner' in train_cfg, 'assigner should be provided ' \ |
|
'when train_cfg is set.' |
|
assigner = train_cfg['assigner'] |
|
self.assigner = TASK_UTILS.build(assigner) |
|
if train_cfg.get('sampler', None) is not None: |
|
raise RuntimeError('DETR do not build sampler.') |
|
|
|
|
|
self.num_classes = num_classes |
|
self.embed_dims = embed_dims |
|
self.num_reg_fcs = num_reg_fcs |
|
self.train_cfg = train_cfg |
|
self.test_cfg = test_cfg |
|
self.loss_cls = MODELS.build(loss_cls) |
|
self.loss_center_cls = MODELS.build(loss_center_cls) |
|
self.loss_bbox = MODELS.build(loss_bbox) |
|
if loss_iou is not None: |
|
self.loss_iou = MODELS.build(loss_iou) |
|
else: |
|
self.loss_iou = None |
|
self.loss_seg = MODELS.build(loss_seg) |
|
self.loss_abu = MODELS.build(loss_abu) |
|
self.use_nms = use_nms |
|
self.class_wise_nms = class_wise_nms |
|
self.score_threshold = score_threshold |
|
self.test_nms = test_nms |
|
if self.loss_cls.use_sigmoid: |
|
self.cls_out_channels = num_classes |
|
else: |
|
self.cls_out_channels = num_classes + 1 |
|
self.neg_hard_num = neg_hard_num |
|
self.seg_neg_hard_num = neg_hard_num |
|
self.use_center = use_center |
|
self.decoder_embed_dims = decoder_embed_dims |
|
self.predict_segmentation = predict_segmentation |
|
self.predict_abundance = predict_abundance |
|
self.save_path = save_path |
|
if self.save_path is not None: |
|
os.makedirs(self.save_path,exist_ok=True) |
|
self.mask_threshold = mask_threshold |
|
self.mask_extend_pixel = mask_extend_pixel |
|
self._init_layers() |
|
|
|
def _init_layers(self) -> None: |
|
"""Initialize classification branch and regression branch of head.""" |
|
|
|
fc_cls = [] |
|
for _ in range(2): |
|
fc_cls.append(Linear(self.embed_dims, self.embed_dims)) |
|
fc_cls.append(Linear(self.embed_dims, self.cls_out_channels)) |
|
fc_cls = nn.Sequential(*fc_cls) |
|
self.cls_branch = fc_cls |
|
if self.predict_segmentation: |
|
fc_cls = [] |
|
for _ in range(2): |
|
fc_cls.append(Linear(self.embed_dims, self.embed_dims)) |
|
fc_cls.append(Linear(self.embed_dims, 1)) |
|
fc_cls = nn.Sequential(*fc_cls) |
|
self.seg_branch = fc_cls |
|
if self.predict_abundance: |
|
fc_cls = [] |
|
for _ in range(2): |
|
fc_cls.append(Linear(self.embed_dims, self.embed_dims)) |
|
fc_cls.append(Linear(self.embed_dims, 1)) |
|
fc_cls = nn.Sequential(*fc_cls) |
|
self.abu_branch = fc_cls |
|
|
|
reg_branch = [] |
|
ratio=2 |
|
reg_branch.append(Linear(self.decoder_embed_dims, self.decoder_embed_dims*ratio)) |
|
reg_branch.append(nn.ReLU()) |
|
for _ in range(self.num_reg_fcs-1): |
|
reg_branch.append(Linear(self.decoder_embed_dims*ratio, self.decoder_embed_dims*ratio)) |
|
reg_branch.append(nn.ReLU()) |
|
reg_branch.append(Linear(self.decoder_embed_dims*ratio, 4)) |
|
reg_branch = nn.Sequential(*reg_branch) |
|
if self.share_pred_layer: |
|
self.reg_branches = nn.ModuleList( |
|
[reg_branch for _ in range(self.num_pred_layer)]) |
|
else: |
|
self.reg_branches = nn.ModuleList([ |
|
copy.deepcopy(reg_branch) for _ in range(self.num_pred_layer) |
|
]) |
|
|
|
if self.use_center: |
|
center_cls = [] |
|
for _ in range(2): |
|
center_cls.append(Linear(self.embed_dims, self.embed_dims)) |
|
center_cls.append(Linear(self.embed_dims, 1)) |
|
center_cls = nn.Sequential(*center_cls) |
|
self.center_branch = center_cls |
|
|
|
|
|
def init_weights(self) -> None: |
|
"""Initialize weights of the Deformable DETR head.""" |
|
if self.loss_cls.use_sigmoid: |
|
bias_init = bias_init_with_prob(0.01) |
|
|
|
nn.init.constant_(self.cls_branch.bias, bias_init) |
|
if self.use_center: |
|
nn.init.constant_(self.center_branch.bias, bias_init) |
|
if self.predict_segmentation: |
|
nn.init.constant_(self.seg_branch.bias, bias_init) |
|
if self.predict_abundance: |
|
nn.init.constant_(self.abu_branch.bias, bias_init) |
|
for m in self.reg_branches: |
|
constant_init(m[-1], 0, bias=0) |
|
nn.init.constant_(m[-1].bias.data[2:], 0.0) |
|
nn.init.constant_(self.reg_branches[0][-1].bias.data[2:], -2.0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _get_targets_single_center(self, |
|
center: Tensor, |
|
center_scores: Tensor, |
|
cls_scores: Tensor, |
|
spatial_shapes: Tensor, |
|
gt_instances: InstanceData, |
|
img_meta: dict) -> tuple: |
|
"""Compute regression and classification targets for one image. |
|
|
|
Outputs from a single decoder layer of a single feature level are used. |
|
|
|
Args: |
|
cls_score (Tensor): Box score logits from a single decoder layer |
|
for one image. Shape [num_queries, cls_out_channels]. |
|
bbox_pred (Tensor): Sigmoid outputs from a single decoder layer |
|
for one image, with normalized coordinate (cx, cy, w, h) and |
|
shape [num_queries, 4]. |
|
gt_instances (:obj:`InstanceData`): Ground truth of instance |
|
annotations. It should includes ``bboxes`` and ``labels`` |
|
attributes. |
|
img_meta (dict): Meta information for one image. |
|
|
|
Returns: |
|
tuple[Tensor]: a tuple containing the following for one image. |
|
|
|
- labels (Tensor): Labels of each image. |
|
- label_weights (Tensor]): Label weights of each image. |
|
- bbox_targets (Tensor): BBox targets of each image. |
|
- bbox_weights (Tensor): BBox weights of each image. |
|
- pos_inds (Tensor): Sampled positive indices for each image. |
|
- neg_inds (Tensor): Sampled negative indices for each image. |
|
""" |
|
img_h, img_w = img_meta['img_shape'] |
|
feat_h = int(spatial_shapes[self.center_feat_indice][0]/self.center_ds_ratio) |
|
feat_w = int(spatial_shapes[self.center_feat_indice][1]/self.center_ds_ratio) |
|
factor = spatial_shapes.new_tensor([feat_w, feat_h]).unsqueeze(0) |
|
|
|
gt_bboxes = gt_instances.bboxes |
|
gt_labels = gt_instances.labels |
|
gt_cxcy = bbox_xyxy_to_cxcywh(gt_bboxes)[:, :2] |
|
gt_cxcy[:, 0] = gt_cxcy[:, 0] * feat_w / img_w |
|
gt_cxcy[:, 1] = gt_cxcy[:, 1] * feat_h / img_h |
|
gt_cxcy= gt_cxcy.long() |
|
gt_bboxes[:, 2:] -= 0.1 |
|
gt_bboxes_x = gt_bboxes[:, 0::2] |
|
gt_bboxes_y = gt_bboxes[:, 1::2] |
|
gt_bboxes_x = torch.floor(gt_bboxes_x * feat_w / img_w) |
|
gt_bboxes_y = torch.floor(gt_bboxes_y * feat_h / img_h) |
|
gt_bboxes_x = gt_bboxes_x.long() |
|
gt_bboxes_y = gt_bboxes_y.long() |
|
heat_map = gt_bboxes.new_full((feat_h, feat_w), 0, dtype=torch.long) |
|
for t_i in range(gt_bboxes.size(0)): |
|
|
|
|
|
|
|
|
|
|
|
|
|
grid_y, grid_x = torch.meshgrid( |
|
torch.linspace(gt_bboxes_y[t_i, 0], gt_bboxes_y[t_i, 1], gt_bboxes_y[t_i, 1]+1-gt_bboxes_y[t_i, 0], |
|
dtype=torch.long, device=gt_cxcy.device), |
|
torch.linspace(gt_bboxes_x[t_i, 0], gt_bboxes_x[t_i, 1], gt_bboxes_x[t_i, 1]+1-gt_bboxes_x[t_i, 0], |
|
dtype=torch.long, device=gt_cxcy.device)) |
|
grid = torch.cat([grid_y.unsqueeze(-1), grid_x.unsqueeze(-1)], -1) |
|
grid = grid.view(-1, 2) |
|
value_input = gt_bboxes.new_full((grid.size(0),), -1, dtype=torch.long) |
|
heat_map.index_put_((grid[:,0],grid[:,1]), value_input) |
|
|
|
value_input = gt_bboxes.new_full((gt_cxcy.size(0),), 1, dtype=torch.long) |
|
heat_map = heat_map.index_put_((gt_cxcy[:,1], gt_cxcy[:,0]), value_input) |
|
heat_map = heat_map.view(-1) |
|
mask = heat_map != -1 |
|
|
|
|
|
pos_inds = torch.where(heat_map == 1)[0] |
|
ignore_inds = torch.where(heat_map == -1)[0] |
|
neg_inds = torch.where(heat_map == 0)[0] |
|
cls_labels = gt_bboxes.new_full((feat_h, feat_w), self.num_classes, dtype=torch.long) |
|
cls_labels = cls_labels.index_put_((gt_cxcy[:,1], gt_cxcy[:,0]), gt_labels) |
|
cls_labels = cls_labels.view(-1) |
|
center_labels = gt_bboxes.new_full((heat_map.size(0),), 1, dtype=torch.long) |
|
center_labels[pos_inds] = 0 |
|
label_weights = gt_bboxes.new_ones(heat_map.size(0)) |
|
if ignore_inds.numel() > 0: |
|
label_weights[ignore_inds] = 0 |
|
if self.neg_hard_num>0: |
|
if self.use_center: |
|
_, indices = torch.sort(center_scores, dim=0, descending=True) |
|
else: |
|
cls_scores_max = torch.max(cls_scores, dim=-1, keepdim=True)[0] |
|
_, indices = torch.sort(cls_scores_max, dim=0, descending=True) |
|
sorted_inds = indices.squeeze() |
|
non_neg_inds = torch.cat([pos_inds,ignore_inds],dim=0) |
|
mask = torch.isin(sorted_inds, non_neg_inds) |
|
remaining_inds = sorted_inds[~mask] |
|
neg_hard_inds = remaining_inds[:self.neg_hard_num] |
|
new_inds = torch.cat([pos_inds, neg_hard_inds], dim=0) |
|
neg_inds = neg_hard_inds |
|
center_labels = center_labels[new_inds] |
|
cls_labels = cls_labels[new_inds] |
|
center_scores = center_scores[new_inds] |
|
cls_scores = cls_scores[new_inds] |
|
label_weights = gt_bboxes.new_ones(new_inds.size(0)) |
|
return (center_labels, cls_labels, center_scores, cls_scores, label_weights, pos_inds, neg_inds) |
|
|
|
def _get_targets_single_pixel(self, |
|
seg_scores: Tensor, |
|
abu_scores: Optional[Tensor], |
|
spatial_shapes: Tensor, |
|
gt_seg: Tensor, |
|
gt_abu: Optional[Tensor], |
|
img_meta: dict) -> tuple: |
|
assert seg_scores.shape[0] == gt_seg.numel() |
|
assert spatial_shapes[0][0]*spatial_shapes[0][1] == gt_seg.numel() |
|
gt_seg = gt_seg.view(-1,1) |
|
pos_inds = torch.where(gt_seg >0)[0] |
|
seg_labels = gt_seg.detach().clone() |
|
seg_labels[gt_seg >0] = 0 |
|
seg_labels[gt_seg == 0] = 1 |
|
seg_labels = seg_labels.long() |
|
|
|
|
|
if self.seg_neg_hard_num== 0: |
|
neg_inds = torch.where(gt_seg == 0)[0] |
|
seg_label_weights = seg_scores.new_ones(seg_labels.size(0)) |
|
else: |
|
seg_scores_max = torch.max(seg_scores, dim=-1, keepdim=True)[0] |
|
_, indices = torch.sort(seg_scores_max, dim=0, descending=True) |
|
sorted_inds = indices.squeeze() |
|
mask = torch.isin(sorted_inds, pos_inds) |
|
remaining_inds = sorted_inds[~mask] |
|
neg_hard_inds = remaining_inds[:self.seg_neg_hard_num] |
|
neg_inds = neg_hard_inds |
|
new_inds = torch.cat([pos_inds, neg_hard_inds], dim=0) |
|
seg_scores = seg_scores[new_inds] |
|
seg_labels = seg_labels[new_inds] |
|
seg_label_weights = seg_scores.new_ones(seg_labels.size(0)) |
|
if self.predict_abundance: |
|
gt_abu = gt_abu.view(-1,1) |
|
abu_scores = abu_scores[pos_inds] |
|
abu_labels = gt_abu[pos_inds]*0.5+0.25 |
|
abu_label_weights = seg_scores.new_ones(abu_labels.size(0)) |
|
else: |
|
abu_scores = None |
|
abu_labels = None |
|
abu_label_weights = None |
|
return seg_scores, seg_labels, seg_label_weights,abu_scores, abu_labels, abu_label_weights, pos_inds, neg_inds |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def loss_and_predict( |
|
self, hidden_states: Tuple[Tensor], |
|
batch_data_samples: SampleList) -> Tuple[dict, InstanceList]: |
|
"""Perform forward propagation of the head, then calculate loss and |
|
predictions from the features and data samples. Over-write because |
|
img_metas are needed as inputs for bbox_head. |
|
|
|
Args: |
|
hidden_states (tuple[Tensor]): Feature from the transformer |
|
decoder, has shape (num_decoder_layers, bs, num_queries, dim). |
|
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains |
|
the meta information of each image and corresponding |
|
annotations. |
|
|
|
Returns: |
|
tuple: the return value is a tuple contains: |
|
|
|
- losses: (dict[str, Tensor]): A dictionary of loss components. |
|
- predictions (list[:obj:`InstanceData`]): Detection |
|
results of each image after the post process. |
|
""" |
|
batch_gt_instances = [] |
|
batch_img_metas = [] |
|
for data_sample in batch_data_samples: |
|
batch_img_metas.append(data_sample.metainfo) |
|
batch_gt_instances.append(data_sample.gt_instances) |
|
outs = self(hidden_states) |
|
loss_inputs = outs + (batch_gt_instances, batch_img_metas) |
|
losses = self.loss_by_feat(*loss_inputs) |
|
predictions = self.predict_by_feat( |
|
*outs, batch_img_metas=batch_img_metas) |
|
return losses, predictions |
|
|
|
def forward(self, hidden_states: Tensor, |
|
references: List[Tensor], |
|
topk_cls_scores: Tensor,) -> Tuple[Tensor]: |
|
"""Forward function. |
|
|
|
Args: |
|
hidden_states (Tensor): Hidden states output from each decoder |
|
layer, has shape (num_decoder_layers, bs, num_queries, dim). |
|
references (list[Tensor]): List of the reference from the decoder. |
|
The first reference is the `init_reference` (initial) and the |
|
other num_decoder_layers(6) references are `inter_references` |
|
(intermediate). The `init_reference` has shape (bs, |
|
num_queries, 4) when `as_two_stage` of the detector is `True`, |
|
otherwise (bs, num_queries, 2). Each `inter_reference` has |
|
shape (bs, num_queries, 4) when `with_box_refine` of the |
|
detector is `True`, otherwise (bs, num_queries, 2). The |
|
coordinates are arranged as (cx, cy) when the last dimension is |
|
2, and (cx, cy, w, h) when it is 4. |
|
|
|
Returns: |
|
tuple[Tensor]: results of head containing the following tensor. |
|
|
|
- all_layers_outputs_classes (Tensor): Outputs from the |
|
classification head, has shape (num_decoder_layers, bs, |
|
num_queries, cls_out_channels). |
|
- all_layers_outputs_coords (Tensor): Sigmoid outputs from the |
|
regression head with normalized coordinate format (cx, cy, w, |
|
h), has shape (num_decoder_layers, bs, num_queries, 4) with the |
|
last dimension arranged as (cx, cy, w, h). |
|
""" |
|
all_layers_outputs_coords = [] |
|
for layer_id in range(hidden_states.shape[0]): |
|
reference = inverse_sigmoid(references[layer_id]) |
|
|
|
hidden_state = hidden_states[layer_id] |
|
tmp_reg_preds = self.reg_branches[layer_id](hidden_state) |
|
if reference.shape[-1] == 4: |
|
|
|
|
|
|
|
tmp_reg_preds += reference |
|
else: |
|
|
|
|
|
|
|
assert reference.shape[-1] == 2 |
|
tmp_reg_preds[..., :2] += reference |
|
outputs_coord = tmp_reg_preds.sigmoid() |
|
all_layers_outputs_coords.append(outputs_coord) |
|
all_layers_outputs_classes = topk_cls_scores.unsqueeze(0).repeat(hidden_states.shape[0],1,1,1) |
|
all_layers_outputs_coords = torch.stack(all_layers_outputs_coords) |
|
return all_layers_outputs_classes, all_layers_outputs_coords |
|
|
|
def loss(self, hidden_states: Tensor, |
|
references: List[Tensor], |
|
centers: Tensor, |
|
center_scores: Tensor, |
|
topk_centers_scores: Tensor, |
|
cls_scores: Tensor, |
|
topk_cls_scores: Tensor, |
|
seg_scores:Optional[Tensor], |
|
abu_scores: Optional[Tensor], |
|
batch_data_samples: SampleList, |
|
dn_meta: Dict[str, int], |
|
spatial_shapes: Tensor) -> dict: |
|
"""Perform forward propagation and loss calculation of the detection |
|
head on the queries of the upstream network. |
|
|
|
Args: |
|
hidden_states (Tensor): Hidden states output from each decoder |
|
layer, has shape (num_decoder_layers, bs, num_queries_total, |
|
dim), where `num_queries_total` is the sum of |
|
`num_denoising_queries` and `num_matching_queries` when |
|
`self.training` is `True`, else `num_matching_queries`. |
|
references (list[Tensor]): List of the reference from the decoder. |
|
The first reference is the `init_reference` (initial) and the |
|
other num_decoder_layers(6) references are `inter_references` |
|
(intermediate). The `init_reference` has shape (bs, |
|
num_queries_total, 4) and each `inter_reference` has shape |
|
(bs, num_queries, 4) with the last dimension arranged as |
|
(cx, cy, w, h). |
|
enc_outputs_class (Tensor): The score of each point on encode |
|
feature map, has shape (bs, num_feat_points, cls_out_channels). |
|
enc_outputs_coord (Tensor): The proposal generate from the |
|
encode feature map, has shape (bs, num_feat_points, 4) with the |
|
last dimension arranged as (cx, cy, w, h). |
|
batch_data_samples (list[:obj:`DetDataSample`]): The Data |
|
Samples. It usually includes information such as |
|
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
|
|
Returns: |
|
dict: A dictionary of loss components. |
|
""" |
|
batch_gt_instances = [] |
|
batch_img_metas = [] |
|
batch_gt_seg = [] |
|
batch_gt_abu = [] |
|
for data_sample in batch_data_samples: |
|
batch_img_metas.append(data_sample.metainfo) |
|
batch_gt_instances.append(data_sample.gt_instances) |
|
if self.predict_segmentation: |
|
batch_gt_seg.append(data_sample.gt_pixel.seg) |
|
else: |
|
batch_gt_seg.append(None) |
|
if self.predict_abundance: |
|
batch_gt_abu.append(data_sample.gt_pixel.abu) |
|
else: |
|
batch_gt_abu.append(None) |
|
outs = self(hidden_states, references, topk_cls_scores) |
|
loss_inputs = outs + (centers, center_scores, topk_centers_scores, cls_scores, topk_cls_scores, |
|
seg_scores,abu_scores, |
|
batch_gt_instances, batch_img_metas, dn_meta, spatial_shapes,batch_gt_seg,batch_gt_abu) |
|
losses = self.loss_by_feat(*loss_inputs) |
|
return losses |
|
|
|
def loss_by_feat( |
|
self, |
|
all_layers_cls_scores: Tensor, |
|
all_layers_bbox_preds: Tensor, |
|
centers: Tensor, |
|
center_scores: Tensor, |
|
topk_centers_scores: Tensor, |
|
cls_scores: Tensor, |
|
topk_cls_scores: Tensor, |
|
seg_scores: Optional[Tensor], |
|
abu_scores: Optional[Tensor], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
dn_meta: Dict[str, int], |
|
spatial_shapes: Tensor, |
|
batch_gt_seg: List, |
|
batch_gt_abu: List, |
|
batch_gt_instances_ignore: OptInstanceList = None, |
|
) -> Dict[str, Tensor]: |
|
"""Loss function. |
|
|
|
Args: |
|
all_layers_cls_scores (Tensor): Classification scores of all |
|
decoder layers, has shape (num_decoder_layers, bs, |
|
num_queries_total, cls_out_channels), where |
|
`num_queries_total` is the sum of `num_denoising_queries` |
|
and `num_matching_queries`. |
|
all_layers_bbox_preds (Tensor): Regression outputs of all decoder |
|
layers. Each is a 4D-tensor with normalized coordinate format |
|
(cx, cy, w, h) and has shape (num_decoder_layers, bs, |
|
num_queries_total, 4). |
|
enc_cls_scores (Tensor): The score of each point on encode |
|
feature map, has shape (bs, num_feat_points, cls_out_channels). |
|
enc_bbox_preds (Tensor): The proposal generate from the encode |
|
feature map, has shape (bs, num_feat_points, 4) with the last |
|
dimension arranged as (cx, cy, w, h). |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
|
|
weight_bbox = 0 |
|
weight_cls = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss_dict = dict() |
|
loss_center, loss_cls = self.loss_center(centers, |
|
center_scores, |
|
cls_scores, |
|
spatial_shapes, |
|
batch_gt_instances=batch_gt_instances, |
|
batch_img_metas=batch_img_metas) |
|
if self.use_center: |
|
loss_dict['loss_center'] = loss_center |
|
loss_dict['loss_cls'] = loss_cls |
|
if loss_cls <= self.loss_center_th: |
|
weight_bbox = 1 |
|
if self.predict_segmentation: |
|
|
|
if self.predict_abundance: |
|
abu_scores = abu_scores.sigmoid() |
|
loss_seg, loss_abu = self.loss_pixel(seg_scores, abu_scores, spatial_shapes, |
|
batch_gt_seg,batch_gt_abu, |
|
batch_img_metas=batch_img_metas) |
|
loss_dict['loss_seg'] = loss_seg*weight_bbox |
|
if self.predict_abundance: |
|
loss_dict['loss_abu'] = loss_abu*weight_bbox |
|
reg_targets = self.get_dn_targets(batch_gt_instances, batch_img_metas, dn_meta) |
|
dn_losses_bbox, dn_losses_iou = multi_apply( |
|
self._loss_dn_single, |
|
all_layers_bbox_preds, |
|
reg_targets=reg_targets, |
|
batch_gt_instances=batch_gt_instances, |
|
batch_img_metas=batch_img_metas, |
|
dn_meta=dn_meta) |
|
for num_dec_layer, (loss_bbox_i, loss_iou_i) in \ |
|
enumerate(zip(dn_losses_bbox, dn_losses_iou)): |
|
loss_dict[f'd{num_dec_layer+1}.dn_loss_bbox'] = loss_bbox_i*weight_bbox |
|
if self.loss_iou is not None: |
|
loss_dict[f'd{num_dec_layer+1}.dn_loss_iou'] = loss_iou_i*weight_bbox |
|
return loss_dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def loss_center(self, |
|
centers: Tensor, |
|
center_scores: Tensor, |
|
cls_scores: Tensor, |
|
spatial_shapes: Tensor, |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict]) -> Tuple[Tensor]: |
|
"""Loss function for outputs from a single decoder layer of a single |
|
feature level. |
|
|
|
Args: |
|
cls_scores (Tensor): Box score logits from a single decoder layer |
|
for all images, has shape (bs, num_queries, cls_out_channels). |
|
bbox_preds (Tensor): Sigmoid outputs from a single decoder layer |
|
for all images, with normalized coordinate (cx, cy, w, h) and |
|
shape (bs, num_queries, 4). |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
|
|
Returns: |
|
Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and |
|
`loss_iou`. |
|
""" |
|
num_imgs = centers.size(0) |
|
if center_scores is None: |
|
center_scores_list = [cls_scores[i] for i in range(num_imgs)] |
|
else: |
|
center_scores_list = [center_scores[i] for i in range(num_imgs)] |
|
|
|
cls_scores_list = [cls_scores[i] for i in range(num_imgs)] |
|
|
|
|
|
centers_list = [centers[i] for i in range(num_imgs)] |
|
spatial_shapes_list = [spatial_shapes for i in range(num_imgs)] |
|
(center_labels_list, cls_labels_list, center_scores_list, cls_scores_list, label_weights_list, pos_inds_list, neg_inds_list,) = multi_apply(self._get_targets_single_center, |
|
centers_list, center_scores_list, cls_scores_list, spatial_shapes_list, batch_gt_instances, batch_img_metas) |
|
num_total_pos = sum((inds.numel() for inds in pos_inds_list)) |
|
num_total_neg = sum((inds.numel() for inds in neg_inds_list)) |
|
center_labels = torch.cat(center_labels_list, 0) |
|
cls_labels = torch.cat(cls_labels_list, 0) |
|
center_scores = torch.cat(center_scores_list, 0) |
|
cls_scores = torch.cat(cls_scores_list, 0) |
|
label_weights = torch.cat(label_weights_list, 0) |
|
|
|
cls_avg_factor = num_total_pos * 1.0 + \ |
|
num_total_neg * 0 |
|
if self.sync_cls_avg_factor: |
|
cls_avg_factor = reduce_mean( |
|
centers.new_tensor([cls_avg_factor])) |
|
cls_avg_factor = max(cls_avg_factor, 1) |
|
if self.use_center: |
|
loss_center = self.loss_center_cls( |
|
center_scores, center_labels, label_weights, avg_factor=cls_avg_factor) |
|
else: |
|
loss_center = None |
|
loss_cls = self.loss_cls( |
|
cls_scores, cls_labels, label_weights, avg_factor=cls_avg_factor) |
|
return loss_center, loss_cls |
|
|
|
def loss_pixel(self, |
|
seg_scores: Tensor, |
|
abu_scores: Tensor, |
|
spatial_shapes: Tensor, |
|
batch_gt_seg: List, |
|
batch_gt_abu: List, |
|
batch_img_metas: List) -> Tuple[Tensor]: |
|
num_imgs = seg_scores.size(0) |
|
seg_scores_list = [seg_scores[i] for i in range(num_imgs)] |
|
if abu_scores is not None: |
|
abu_scores_list = [abu_scores[i] for i in range(num_imgs)] |
|
else: |
|
abu_scores_list = [None for i in range(num_imgs)] |
|
spatial_shapes_list = [spatial_shapes for i in range(num_imgs)] |
|
(seg_scores_list, seg_labels_list, seg_label_weights_list,abu_scores_list, abu_labels_list, abu_label_weights_list, pos_inds_list, neg_inds_list) = multi_apply(self._get_targets_single_pixel, |
|
seg_scores_list, abu_scores_list, |
|
spatial_shapes_list, |
|
batch_gt_seg, |
|
batch_gt_abu, |
|
batch_img_metas) |
|
num_total_pos = sum((inds.numel() for inds in pos_inds_list)) |
|
num_total_neg = sum((inds.numel() for inds in neg_inds_list)) |
|
seg_scores = torch.cat(seg_scores_list, 0) |
|
seg_labels = torch.cat(seg_labels_list, 0) |
|
seg_label_weights = torch.cat(seg_label_weights_list, 0) |
|
cls_avg_factor = num_total_pos * 1.0 + num_total_neg * 0 |
|
if self.sync_cls_avg_factor: |
|
cls_avg_factor = reduce_mean( |
|
seg_scores.new_tensor([cls_avg_factor])) |
|
cls_avg_factor = max(cls_avg_factor, 1) |
|
loss_seg = self.loss_seg( |
|
seg_scores, seg_labels, seg_label_weights, avg_factor=cls_avg_factor) |
|
if self.predict_abundance: |
|
abu_scores = torch.cat(abu_scores_list, 0) |
|
abu_labels = torch.cat(abu_labels_list, 0) |
|
abu_label_weights = torch.cat(abu_label_weights_list, 0) |
|
|
|
|
|
|
|
|
|
|
|
loss_abu = self.loss_abu( |
|
abu_scores, abu_labels, abu_label_weights) |
|
else: |
|
loss_abu = None |
|
return loss_seg, loss_abu |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _loss_dn_single(self, dn_bbox_preds: Tensor, |
|
reg_targets: Tuple[list, int], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
dn_meta: Dict[str, int]) -> Tuple[Tensor]: |
|
"""Denoising loss for outputs from a single decoder layer. |
|
|
|
Args: |
|
dn_cls_scores (Tensor): Classification scores of a single decoder |
|
layer in denoising part, has shape (bs, num_denoising_queries, |
|
cls_out_channels). |
|
dn_bbox_preds (Tensor): Regression outputs of a single decoder |
|
layer in denoising part. Each is a 4D-tensor with normalized |
|
coordinate format (cx, cy, w, h) and has shape |
|
(bs, num_denoising_queries, 4). |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
|
|
Returns: |
|
Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and |
|
`loss_iou`. |
|
""" |
|
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,num_total_pos) = reg_targets |
|
bbox_targets = torch.cat(bbox_targets_list, 0) |
|
bbox_weights = torch.cat(bbox_weights_list, 0) |
|
|
|
|
|
|
|
num_total_pos = dn_bbox_preds.new_tensor([num_total_pos]) |
|
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item() |
|
|
|
|
|
factors = [] |
|
for img_meta, bbox_pred in zip(batch_img_metas, dn_bbox_preds): |
|
img_h, img_w = img_meta['img_shape'] |
|
factor = bbox_pred.new_tensor([img_w, img_h, img_w, |
|
img_h]).unsqueeze(0).repeat( |
|
bbox_pred.size(0), 1) |
|
factors.append(factor) |
|
factors = torch.cat(factors) |
|
|
|
|
|
|
|
bbox_preds = dn_bbox_preds.reshape(-1, 4) |
|
bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors |
|
bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors |
|
|
|
if self.loss_iou is not None: |
|
loss_iou = self.loss_iou( |
|
bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos) |
|
else: |
|
loss_iou = None |
|
|
|
loss_bbox = self.loss_bbox( |
|
bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos) |
|
return loss_bbox, loss_iou |
|
|
|
def get_dn_targets(self, batch_gt_instances: InstanceList, |
|
batch_img_metas: dict, dn_meta: Dict[str, |
|
int]) -> tuple: |
|
"""Get targets in denoising part for a batch of images. |
|
|
|
Args: |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
|
|
Returns: |
|
tuple: a tuple containing the following targets. |
|
|
|
- labels_list (list[Tensor]): Labels for all images. |
|
- label_weights_list (list[Tensor]): Label weights for all images. |
|
- bbox_targets_list (list[Tensor]): BBox targets for all images. |
|
- bbox_weights_list (list[Tensor]): BBox weights for all images. |
|
- num_total_pos (int): Number of positive samples in all images. |
|
- num_total_neg (int): Number of negative samples in all images. |
|
""" |
|
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,pos_inds_list) = multi_apply( |
|
self._get_dn_targets_single, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
dn_meta=dn_meta) |
|
num_total_pos = sum((inds.numel() for inds in pos_inds_list)) |
|
return (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos,) |
|
|
|
def _get_dn_targets_single(self, gt_instances: InstanceData, |
|
img_meta: dict, dn_meta: Dict[str, |
|
int]) -> tuple: |
|
"""Get targets in denoising part for one image. |
|
|
|
Args: |
|
gt_instances (:obj:`InstanceData`): Ground truth of instance |
|
annotations. It should includes ``bboxes`` and ``labels`` |
|
attributes. |
|
img_meta (dict): Meta information for one image. |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. It will be used for split outputs of |
|
denoising and matching parts and loss calculation. |
|
|
|
Returns: |
|
tuple[Tensor]: a tuple containing the following for one image. |
|
|
|
- labels (Tensor): Labels of each image. |
|
- label_weights (Tensor]): Label weights of each image. |
|
- bbox_targets (Tensor): BBox targets of each image. |
|
- bbox_weights (Tensor): BBox weights of each image. |
|
- pos_inds (Tensor): Sampled positive indices for each image. |
|
- neg_inds (Tensor): Sampled negative indices for each image. |
|
""" |
|
gt_bboxes = gt_instances.bboxes |
|
gt_labels = gt_instances.labels |
|
num_groups = dn_meta['num_denoising_groups'] |
|
num_denoising_queries = dn_meta['num_denoising_queries'] |
|
num_queries_each_group = int(num_denoising_queries / num_groups) |
|
device = gt_bboxes.device |
|
|
|
if len(gt_labels) > 0: |
|
t = torch.arange(len(gt_labels), dtype=torch.long, device=device) |
|
t = t.unsqueeze(0).repeat(num_groups, 1) |
|
pos_assigned_gt_inds = t.flatten() |
|
pos_inds = torch.arange(num_groups, dtype=torch.long, device=device) |
|
pos_inds = pos_inds.unsqueeze(1) * num_queries_each_group + t |
|
pos_inds = pos_inds.flatten() |
|
else: |
|
pos_inds = pos_assigned_gt_inds = \ |
|
gt_bboxes.new_tensor([], dtype=torch.long) |
|
|
|
|
|
labels = gt_bboxes.new_full((num_denoising_queries, ), |
|
self.num_classes, |
|
dtype=torch.long) |
|
labels[pos_inds] = gt_labels[pos_assigned_gt_inds] |
|
label_weights = gt_bboxes.new_zeros(num_denoising_queries) |
|
label_weights[pos_inds] = 1.0 |
|
|
|
bbox_targets = torch.zeros(num_denoising_queries, 4, device=device) |
|
bbox_weights = torch.zeros(num_denoising_queries, 4, device=device) |
|
bbox_weights[pos_inds] = 1.0 |
|
img_h, img_w = img_meta['img_shape'] |
|
|
|
|
|
|
|
|
|
factor = gt_bboxes.new_tensor([img_w, img_h, img_w, |
|
img_h]).unsqueeze(0) |
|
gt_bboxes_normalized = gt_bboxes / factor |
|
gt_bboxes_targets = bbox_xyxy_to_cxcywh(gt_bboxes_normalized) |
|
bbox_targets[pos_inds] = gt_bboxes_targets.repeat([num_groups, 1]) |
|
|
|
return (labels, label_weights,bbox_targets, bbox_weights, pos_inds) |
|
|
|
|
|
@staticmethod |
|
def split_outputs(all_layers_cls_scores: Tensor, |
|
all_layers_bbox_preds: Tensor, |
|
dn_meta: Dict[str, int]) -> Tuple[Tensor]: |
|
"""Split outputs of the denoising part and the matching part. |
|
|
|
For the total outputs of `num_queries_total` length, the former |
|
`num_denoising_queries` outputs are from denoising queries, and |
|
the rest `num_matching_queries` ones are from matching queries, |
|
where `num_queries_total` is the sum of `num_denoising_queries` and |
|
`num_matching_queries`. |
|
|
|
Args: |
|
all_layers_cls_scores (Tensor): Classification scores of all |
|
decoder layers, has shape (num_decoder_layers, bs, |
|
num_queries_total, cls_out_channels). |
|
all_layers_bbox_preds (Tensor): Regression outputs of all decoder |
|
layers. Each is a 4D-tensor with normalized coordinate format |
|
(cx, cy, w, h) and has shape (num_decoder_layers, bs, |
|
num_queries_total, 4). |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. |
|
|
|
Returns: |
|
Tuple[Tensor]: a tuple containing the following outputs. |
|
|
|
- all_layers_matching_cls_scores (Tensor): Classification scores |
|
of all decoder layers in matching part, has shape |
|
(num_decoder_layers, bs, num_matching_queries, cls_out_channels). |
|
- all_layers_matching_bbox_preds (Tensor): Regression outputs of |
|
all decoder layers in matching part. Each is a 4D-tensor with |
|
normalized coordinate format (cx, cy, w, h) and has shape |
|
(num_decoder_layers, bs, num_matching_queries, 4). |
|
- all_layers_denoising_cls_scores (Tensor): Classification scores |
|
of all decoder layers in denoising part, has shape |
|
(num_decoder_layers, bs, num_denoising_queries, |
|
cls_out_channels). |
|
- all_layers_denoising_bbox_preds (Tensor): Regression outputs of |
|
all decoder layers in denoising part. Each is a 4D-tensor with |
|
normalized coordinate format (cx, cy, w, h) and has shape |
|
(num_decoder_layers, bs, num_denoising_queries, 4). |
|
""" |
|
if dn_meta is not None: |
|
num_denoising_queries = dn_meta['num_denoising_queries'] |
|
all_layers_denoising_cls_scores = \ |
|
all_layers_cls_scores[:,:, : num_denoising_queries, :] |
|
all_layers_denoising_bbox_preds = \ |
|
all_layers_bbox_preds[:, :, : num_denoising_queries, :] |
|
all_layers_matching_cls_scores = \ |
|
all_layers_cls_scores[:, :, num_denoising_queries:, :] |
|
all_layers_matching_bbox_preds = \ |
|
all_layers_bbox_preds[:, :, num_denoising_queries:, :] |
|
else: |
|
all_layers_denoising_cls_scores = None |
|
all_layers_denoising_bbox_preds = None |
|
all_layers_matching_cls_scores = all_layers_cls_scores |
|
all_layers_matching_bbox_preds = all_layers_bbox_preds |
|
return (all_layers_matching_cls_scores, all_layers_matching_bbox_preds, |
|
all_layers_denoising_cls_scores, |
|
all_layers_denoising_bbox_preds) |
|
|
|
|
|
@staticmethod |
|
def split_outputsv1(all_layers_cls_scores: Tensor, |
|
all_layers_bbox_preds: Tensor, |
|
dn_meta: Dict[str, int]) -> Tuple[Tensor]: |
|
"""Split outputs of the denoising part and the matching part. |
|
|
|
For the total outputs of `num_queries_total` length, the former |
|
`num_denoising_queries` outputs are from denoising queries, and |
|
the rest `num_matching_queries` ones are from matching queries, |
|
where `num_queries_total` is the sum of `num_denoising_queries` and |
|
`num_matching_queries`. |
|
|
|
Args: |
|
all_layers_cls_scores (Tensor): Classification scores of all |
|
decoder layers, has shape (num_decoder_layers, bs, |
|
num_queries_total, cls_out_channels). |
|
all_layers_bbox_preds (Tensor): Regression outputs of all decoder |
|
layers. Each is a 4D-tensor with normalized coordinate format |
|
(cx, cy, w, h) and has shape (num_decoder_layers, bs, |
|
num_queries_total, 4). |
|
dn_meta (Dict[str, int]): The dictionary saves information about |
|
group collation, including 'num_denoising_queries' and |
|
'num_denoising_groups'. |
|
|
|
Returns: |
|
Tuple[Tensor]: a tuple containing the following outputs. |
|
|
|
- all_layers_matching_cls_scores (Tensor): Classification scores |
|
of all decoder layers in matching part, has shape |
|
(num_decoder_layers, bs, num_matching_queries, cls_out_channels). |
|
- all_layers_matching_bbox_preds (Tensor): Regression outputs of |
|
all decoder layers in matching part. Each is a 4D-tensor with |
|
normalized coordinate format (cx, cy, w, h) and has shape |
|
(num_decoder_layers, bs, num_matching_queries, 4). |
|
- all_layers_denoising_cls_scores (Tensor): Classification scores |
|
of all decoder layers in denoising part, has shape |
|
(num_decoder_layers, bs, num_denoising_queries, |
|
cls_out_channels). |
|
- all_layers_denoising_bbox_preds (Tensor): Regression outputs of |
|
all decoder layers in denoising part. Each is a 4D-tensor with |
|
normalized coordinate format (cx, cy, w, h) and has shape |
|
(num_decoder_layers, bs, num_denoising_queries, 4). |
|
""" |
|
if dn_meta is not None: |
|
num_denoising_queries = dn_meta['num_denoising_queries'] |
|
all_layers_denoising_cls_scores = \ |
|
all_layers_cls_scores[:, : num_denoising_queries, :] |
|
all_layers_denoising_bbox_preds = \ |
|
all_layers_bbox_preds[:, :, : num_denoising_queries, :] |
|
all_layers_matching_cls_scores = \ |
|
all_layers_cls_scores[:, num_denoising_queries:, :] |
|
all_layers_matching_bbox_preds = \ |
|
all_layers_bbox_preds[:, :, num_denoising_queries:, :] |
|
else: |
|
all_layers_denoising_cls_scores = None |
|
all_layers_denoising_bbox_preds = None |
|
all_layers_matching_cls_scores = all_layers_cls_scores |
|
all_layers_matching_bbox_preds = all_layers_bbox_preds |
|
return (all_layers_matching_cls_scores, all_layers_matching_bbox_preds, |
|
all_layers_denoising_cls_scores, |
|
all_layers_denoising_bbox_preds) |
|
|
|
def predict(self, |
|
hidden_states: Tensor, |
|
references: List[Tensor], |
|
centers: Tensor, |
|
center_scores: Tensor, |
|
topk_centers_scores: Tensor, |
|
cls_scores: Tensor, |
|
topk_cls_scores: Tensor, |
|
seg_scores: Optional[Tensor], |
|
abu_scores: Optional[Tensor], |
|
batch_data_samples: SampleList, |
|
rescale: bool = True) -> InstanceList: |
|
"""Perform forward propagation and loss calculation of the detection |
|
head on the queries of the upstream network. |
|
|
|
Args: |
|
hidden_states (Tensor): Hidden states output from each decoder |
|
layer, has shape (num_decoder_layers, num_queries, bs, dim). |
|
references (list[Tensor]): List of the reference from the decoder. |
|
The first reference is the `init_reference` (initial) and the |
|
other num_decoder_layers(6) references are `inter_references` |
|
(intermediate). The `init_reference` has shape (bs, |
|
num_queries, 4) when `as_two_stage` of the detector is `True`, |
|
otherwise (bs, num_queries, 2). Each `inter_reference` has |
|
shape (bs, num_queries, 4) when `with_box_refine` of the |
|
detector is `True`, otherwise (bs, num_queries, 2). The |
|
coordinates are arranged as (cx, cy) when the last dimension is |
|
2, and (cx, cy, w, h) when it is 4. |
|
batch_data_samples (list[:obj:`DetDataSample`]): The Data |
|
Samples. It usually includes information such as |
|
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. |
|
rescale (bool, optional): If `True`, return boxes in original |
|
image space. Defaults to `True`. |
|
|
|
Returns: |
|
list[obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
""" |
|
batch_img_metas = [ |
|
data_samples.metainfo for data_samples in batch_data_samples |
|
] |
|
outs = self(hidden_states, references, topk_cls_scores) |
|
if self.predict_segmentation: |
|
seg_scores = seg_scores.sigmoid() |
|
if self.predict_abundance: |
|
abu_scores = torch.clamp((abu_scores.sigmoid()-0.25)*2,0,1) |
|
predictions = self.predict_by_feat( |
|
*outs,seg_scores,abu_scores, batch_img_metas=batch_img_metas, rescale=rescale) |
|
return predictions |
|
|
|
def predict_by_feat(self, |
|
all_layers_cls_scores: Tensor, |
|
all_layers_bbox_preds: Tensor, |
|
seg_scores: Optional[Tensor], |
|
abu_scores: Optional[Tensor], |
|
batch_img_metas: List[Dict], |
|
rescale: bool = False) -> InstanceList: |
|
"""Transform a batch of output features extracted from the head into |
|
bbox results. |
|
|
|
Args: |
|
all_layers_cls_scores (Tensor): Classification scores of all |
|
decoder layers, has shape (num_decoder_layers, bs, num_queries, |
|
cls_out_channels). |
|
all_layers_bbox_preds (Tensor): Regression outputs of all decoder |
|
layers. Each is a 4D-tensor with normalized coordinate format |
|
(cx, cy, w, h) and shape (num_decoder_layers, bs, num_queries, |
|
4) with the last dimension arranged as (cx, cy, w, h). |
|
batch_img_metas (list[dict]): Meta information of each image. |
|
rescale (bool, optional): If `True`, return boxes in original |
|
image space. Default `False`. |
|
|
|
Returns: |
|
list[obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
""" |
|
cls_scores = all_layers_cls_scores[-1] |
|
bbox_preds = all_layers_bbox_preds[-1] |
|
|
|
result_list = [] |
|
for img_id in range(len(batch_img_metas)): |
|
cls_score = cls_scores[img_id] |
|
bbox_pred = bbox_preds[img_id] |
|
img_meta = batch_img_metas[img_id] |
|
if self.predict_segmentation: |
|
seg_score = seg_scores[img_id] |
|
else: |
|
seg_score = None |
|
if self.predict_abundance: |
|
abu_score = abu_scores[img_id] |
|
else: |
|
abu_score = None |
|
results = self._predict_by_feat_single(cls_score, bbox_pred, |
|
seg_score,abu_score, |
|
img_meta, rescale) |
|
result_list.append(results) |
|
return result_list |
|
|
|
def _predict_by_feat_single(self, |
|
cls_score: Tensor, |
|
bbox_pred: Tensor, |
|
seg_score: Optional[Tensor], |
|
abu_score: Optional[Tensor], |
|
img_meta: dict, |
|
rescale: bool = True) -> InstanceData: |
|
"""Transform outputs from the last decoder layer into bbox predictions |
|
for each image. |
|
|
|
Args: |
|
cls_score (Tensor): Box score logits from the last decoder layer |
|
for each image. Shape [num_queries, cls_out_channels]. |
|
bbox_pred (Tensor): Sigmoid outputs from the last decoder layer |
|
for each image, with coordinate format (cx, cy, w, h) and |
|
shape [num_queries, 4]. |
|
img_meta (dict): Image meta info. |
|
rescale (bool): If True, return boxes in original image |
|
space. Default True. |
|
|
|
Returns: |
|
:obj:`InstanceData`: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
""" |
|
assert len(cls_score) == len(bbox_pred) |
|
max_per_img = self.test_cfg.get('max_per_img', len(cls_score)) |
|
|
|
img_shape = img_meta['img_shape'] |
|
assert self.loss_cls.use_sigmoid |
|
cls_score = cls_score.sigmoid() |
|
|
|
scores, indexes = torch.sort(cls_score.view(-1), descending=True) |
|
|
|
|
|
det_labels = indexes % self.num_classes |
|
bbox_index = torch.div(indexes, self.num_classes, rounding_mode='trunc') |
|
bbox_pred = bbox_pred[bbox_index] |
|
det_bboxes = bbox_cxcywh_to_xyxy(bbox_pred) |
|
det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1] |
|
det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0] |
|
det_bboxes[:, 0::2].clamp_(min=0, max=img_shape[1]) |
|
det_bboxes[:, 1::2].clamp_(min=0, max=img_shape[0]) |
|
if self.use_nms: |
|
if det_labels.numel() > 0: |
|
bboxes_scores, keep = batched_nms(det_bboxes, scores.contiguous(), det_labels, self.test_nms, class_agnostic=(not self.class_wise_nms)) |
|
if keep.numel() > max_per_img: |
|
bboxes_scores = bboxes_scores[:max_per_img] |
|
det_labels = det_labels[keep][:max_per_img] |
|
else: |
|
det_labels = det_labels[keep] |
|
det_bboxes = bboxes_scores[:, :-1] |
|
scores = bboxes_scores[:, -1] |
|
if self.pre_bboxes_round: |
|
det_bboxes = adjust_bbox_to_pixel(det_bboxes) |
|
if rescale: |
|
|
|
|
|
|
|
|
|
if img_meta.get('scale_factor') is not None: |
|
det_bboxes /= det_bboxes.new_tensor( |
|
img_meta['scale_factor']).repeat((1, 2)) |
|
|
|
if self.predict_segmentation: |
|
img_h, img_w = img_meta['ori_shape'][:2] |
|
seg_score = seg_score.view(img_h, img_w) |
|
seg_mask=seg_score>self.mask_threshold |
|
N = det_bboxes.size(0) |
|
im_mask = torch.zeros( |
|
N, |
|
img_shape[0], |
|
img_shape[1], |
|
device=det_bboxes.device, |
|
dtype=torch.bool) |
|
for i in range(N): |
|
x0, y0, x1, y1 = det_bboxes[i,:] |
|
x0 = max(int(x0)-self.mask_extend_pixel,0) |
|
x1 = min(int(x1)+self.mask_extend_pixel,img_w) |
|
y0 = max(int(y0)-self.mask_extend_pixel,0) |
|
y1 = min(int(y1)+self.mask_extend_pixel,img_h) |
|
im_mask[i, y0:y1,x0:x1] =seg_mask[y0:y1,x0:x1 ] |
|
new_mask = torch.sum(im_mask,dim=0) |
|
seg_score_new = seg_score.clone().detach() |
|
seg_score_new[new_mask==0] = 0 |
|
if self.save_path is not None: |
|
img_name=img_meta['img_path'].split('/')[-1].replace('.npy','').replace('.png','').replace('.jpg','').replace('.mat','') |
|
sio.savemat(os.path.join(self.save_path,img_name+'_seg_scoremap.mat'), |
|
{'data':seg_score.detach().cpu().numpy()}) |
|
sio.savemat(os.path.join(self.save_path,img_name+'_seg_predictionmap.mat'), |
|
{'data':seg_score_new.detach().cpu().numpy()}) |
|
if self.predict_abundance: |
|
abu_score = abu_score.view(img_h, img_w) |
|
abu_score_new = abu_score.clone().detach() |
|
abu_score_new[new_mask == 0] = 0 |
|
sio.savemat(os.path.join(self.save_path, img_name + '_abu_scoremap.mat'), |
|
{'data': abu_score.detach().cpu().numpy()}) |
|
sio.savemat(os.path.join(self.save_path, img_name + '_abu_predictionmap.mat'), |
|
{'data': seg_score_new.detach().cpu().numpy()}) |
|
results = InstanceData() |
|
results.bboxes = det_bboxes |
|
results.scores = scores |
|
results.labels = det_labels |
|
if self.predict_segmentation: |
|
results.masks = im_mask |
|
return results |
|
|