samewind / mmdet /models /dense_heads /evolvedet_head.py
scfive
Resolve README.md conflict and continue rebase
e8f2571
raw
history blame contribute delete
79.3 kB
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path
from typing import Dict, List, Tuple, Optional
from torch import Tensor
from mmcv.cnn import Linear
from mmengine.model import bias_init_with_prob, constant_init
from mmengine.structures import InstanceData
from mmengine.model import BaseModule
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh, bbox_overlaps
from mmdet.utils import InstanceList, OptInstanceList, reduce_mean
from ..utils import multi_apply
from ..layers import inverse_sigmoid
from .detr_head import DETRHead
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.utils import (ConfigType, InstanceList, OptInstanceList,OptConfigType,
OptMultiConfig, reduce_mean)
from mmcv.ops import nms, batched_nms
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Transformer
import scipy.io as sio
import os
from ..losses import QualityFocalLoss
# def adjust_bbox_to_pixel(bboxes: Tensor):
# # 向下取整得到目标的左上角坐标
# adjusted_bboxes = torch.floor(bboxes)
# # 向上取整得到目标的右下角坐标
# adjusted_bboxes[:, 2:] = torch.ceil(bboxes[:, 2:])
# return adjusted_bboxes
def adjust_bbox_to_pixel(bboxes: Tensor):
# 四舍五入取整坐标
adjusted_bboxes = torch.round(bboxes)
return adjusted_bboxes
@MODELS.register_module()
class EvloveDetHead(BaseModule):
r"""Head of the DINO: DETR with Improved DeNoising Anchor Boxes
for End-to-End Object Detection
Code is modified from the `official github repo
<https://github.com/IDEA-Research/DINO>`_.
More details can be found in the `paper
<https://arxiv.org/abs/2203.03605>`_ .
"""
def __init__(self,
num_classes: int,
embed_dims: int = 256,
decoder_embed_dims: int = 256,
num_reg_fcs: int = 2,
center_feat_indice: int=1,
sync_cls_avg_factor: bool = False,
use_nms: bool = False,
score_threshold: float = 0.0,
class_wise_nms: bool = True,
test_nms: OptConfigType = dict(type='nms', iou_threshold=0.01, ),
loss_cls: ConfigType = dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_center_cls: ConfigType = dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox: ConfigType = dict(type='L1Loss', loss_weight=5.0),
loss_iou: OptConfigType = None,
loss_seg: ConfigType = dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
# loss_seg: ConfigType = dict(type='L1Loss', loss_weight=1.0),
loss_abu: ConfigType = dict(type='L1Loss', loss_weight=1.0),
train_cfg: ConfigType = dict(
assigner=dict(
type='HungarianAssigner',
match_costs=[
dict(type='ClassificationCost', weight=1.),
dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
dict(type='IoUCost', iou_mode='giou', weight=2.0)
])),
test_cfg: ConfigType = dict(max_per_img=100),
init_cfg: OptMultiConfig = None,
share_pred_layer: bool = False,
num_pred_layer: int = 6,
as_two_stage: bool = False,
pre_bboxes_round: bool = True,
neg_hard_num: int = 0,
seg_neg_hard_num: int = 0,
loss_center_th: float = 0.2,
loss_iou_th: float = 0.3,
center_ds_ratio: int = 1,
use_center: bool = True,
predict_segmentation: bool = False,
predict_abundance: bool = False,
save_path: Optional[str]= None,
mask_threshold:float = 0.5,
mask_extend_pixel: int = 2,
) -> None:
self.share_pred_layer = share_pred_layer
self.num_pred_layer = num_pred_layer
self.as_two_stage = as_two_stage
self.pre_bboxes_round = pre_bboxes_round
self.score_threshold = score_threshold
self.loss_center_th = loss_center_th
self.loss_iou_th = loss_iou_th
self.center_feat_indice = center_feat_indice
self.center_ds_ratio = center_ds_ratio
super().__init__(init_cfg=init_cfg)
self.bg_cls_weight = 0
self.sync_cls_avg_factor = sync_cls_avg_factor
class_weight = loss_cls.get('class_weight', None)
if class_weight is not None and (self.__class__ is DETRHead):
assert isinstance(class_weight, float), 'Expected ' \
'class_weight to have type float. Found ' \
f'{type(class_weight)}.'
# NOTE following the official DETR repo, bg_cls_weight means
# relative classification weight of the no-object class.
bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight)
assert isinstance(bg_cls_weight, float), 'Expected ' \
'bg_cls_weight to have type float. Found ' \
f'{type(bg_cls_weight)}.'
class_weight = torch.ones(num_classes + 1) * class_weight
# set background class as the last indice
class_weight[num_classes] = bg_cls_weight
loss_cls.update({'class_weight': class_weight})
if 'bg_cls_weight' in loss_cls:
loss_cls.pop('bg_cls_weight')
self.bg_cls_weight = bg_cls_weight
if train_cfg:
assert 'assigner' in train_cfg, 'assigner should be provided ' \
'when train_cfg is set.'
assigner = train_cfg['assigner']
self.assigner = TASK_UTILS.build(assigner)
if train_cfg.get('sampler', None) is not None:
raise RuntimeError('DETR do not build sampler.')
# self.bbox_assigner = TASK_UTILS.build(bbox_assigner)
# self.dn_assigner = TASK_UTILS.build(dn_assigner)
self.num_classes = num_classes
self.embed_dims = embed_dims
self.num_reg_fcs = num_reg_fcs
self.train_cfg = train_cfg
self.test_cfg = test_cfg
self.loss_cls = MODELS.build(loss_cls)
self.loss_center_cls = MODELS.build(loss_center_cls)
self.loss_bbox = MODELS.build(loss_bbox)
if loss_iou is not None:
self.loss_iou = MODELS.build(loss_iou)
else:
self.loss_iou = None
self.loss_seg = MODELS.build(loss_seg)
self.loss_abu = MODELS.build(loss_abu)
self.use_nms = use_nms
self.class_wise_nms = class_wise_nms
self.score_threshold = score_threshold
self.test_nms = test_nms
if self.loss_cls.use_sigmoid:
self.cls_out_channels = num_classes
else:
self.cls_out_channels = num_classes + 1
self.neg_hard_num = neg_hard_num
self.seg_neg_hard_num = neg_hard_num
self.use_center = use_center
self.decoder_embed_dims = decoder_embed_dims
self.predict_segmentation = predict_segmentation
self.predict_abundance = predict_abundance
self.save_path = save_path
if self.save_path is not None:
os.makedirs(self.save_path,exist_ok=True)
self.mask_threshold = mask_threshold
self.mask_extend_pixel = mask_extend_pixel
self._init_layers()
def _init_layers(self) -> None:
"""Initialize classification branch and regression branch of head."""
# fc_cls = Linear(self.embed_dims, self.cls_out_channels)
fc_cls = []
for _ in range(2):
fc_cls.append(Linear(self.embed_dims, self.embed_dims))
fc_cls.append(Linear(self.embed_dims, self.cls_out_channels))
fc_cls = nn.Sequential(*fc_cls)
self.cls_branch = fc_cls
if self.predict_segmentation:
fc_cls = []
for _ in range(2):
fc_cls.append(Linear(self.embed_dims, self.embed_dims))
fc_cls.append(Linear(self.embed_dims, 1))
fc_cls = nn.Sequential(*fc_cls)
self.seg_branch = fc_cls
if self.predict_abundance:
fc_cls = []
for _ in range(2):
fc_cls.append(Linear(self.embed_dims, self.embed_dims))
fc_cls.append(Linear(self.embed_dims, 1))
fc_cls = nn.Sequential(*fc_cls)
self.abu_branch = fc_cls
reg_branch = []
ratio=2
reg_branch.append(Linear(self.decoder_embed_dims, self.decoder_embed_dims*ratio))
reg_branch.append(nn.ReLU())
for _ in range(self.num_reg_fcs-1):
reg_branch.append(Linear(self.decoder_embed_dims*ratio, self.decoder_embed_dims*ratio))
reg_branch.append(nn.ReLU())
reg_branch.append(Linear(self.decoder_embed_dims*ratio, 4))
reg_branch = nn.Sequential(*reg_branch)
if self.share_pred_layer:
self.reg_branches = nn.ModuleList(
[reg_branch for _ in range(self.num_pred_layer)])
else:
self.reg_branches = nn.ModuleList([
copy.deepcopy(reg_branch) for _ in range(self.num_pred_layer)
])
if self.use_center:
center_cls = []
for _ in range(2):
center_cls.append(Linear(self.embed_dims, self.embed_dims))
center_cls.append(Linear(self.embed_dims, 1))
center_cls = nn.Sequential(*center_cls)
self.center_branch = center_cls
def init_weights(self) -> None:
"""Initialize weights of the Deformable DETR head."""
if self.loss_cls.use_sigmoid:
bias_init = bias_init_with_prob(0.01)
# for m in self.cls_branches:
nn.init.constant_(self.cls_branch.bias, bias_init)
if self.use_center:
nn.init.constant_(self.center_branch.bias, bias_init)
if self.predict_segmentation:
nn.init.constant_(self.seg_branch.bias, bias_init)
if self.predict_abundance:
nn.init.constant_(self.abu_branch.bias, bias_init)
for m in self.reg_branches:
constant_init(m[-1], 0, bias=0)
nn.init.constant_(m[-1].bias.data[2:], 0.0)
nn.init.constant_(self.reg_branches[0][-1].bias.data[2:], -2.0)
# def _get_targets_single(self, cls_score: Tensor, bbox_pred: Tensor,
# gt_instances: InstanceData,
# img_meta: dict,
# with_neg_cls:bool=True,
# assigner_type:str = None) -> tuple:
# """Compute regression and classification targets for one image.
#
# Outputs from a single decoder layer of a single feature level are used.
#
# Args:
# cls_score (Tensor): Box score logits from a single decoder layer
# for one image. Shape [num_queries, cls_out_channels].
# bbox_pred (Tensor): Sigmoid outputs from a single decoder layer
# for one image, with normalized coordinate (cx, cy, w, h) and
# shape [num_queries, 4].
# gt_instances (:obj:`InstanceData`): Ground truth of instance
# annotations. It should includes ``bboxes`` and ``labels``
# attributes.
# img_meta (dict): Meta information for one image.
#
# Returns:
# tuple[Tensor]: a tuple containing the following for one image.
#
# - labels (Tensor): Labels of each image.
# - label_weights (Tensor]): Label weights of each image.
# - bbox_targets (Tensor): BBox targets of each image.
# - bbox_weights (Tensor): BBox weights of each image.
# - pos_inds (Tensor): Sampled positive indices for each image.
# - neg_inds (Tensor): Sampled negative indices for each image.
# """
# img_h, img_w = img_meta['img_shape']
# factor = bbox_pred.new_tensor([img_w, img_h, img_w,
# img_h]).unsqueeze(0)
# num_bboxes = bbox_pred.size(0)
# # convert bbox_pred from xywh, normalized to xyxy, unnormalized
# bbox_pred = bbox_cxcywh_to_xyxy(bbox_pred)
# bbox_pred = bbox_pred * factor
#
# pred_instances = InstanceData(scores=cls_score, bboxes=bbox_pred,priors=bbox_pred)
# # assigner and sampler
# if assigner_type == 'dn':
# assign_result = self.dn_assigner.assign(
# pred_instances=pred_instances,
# gt_instances=gt_instances,
# img_meta=img_meta)
# else:
# assign_result = self.assigner.assign(
# pred_instances=pred_instances,
# gt_instances=gt_instances,
# img_meta=img_meta)
#
# gt_bboxes = gt_instances.bboxes
# gt_labels = gt_instances.labels
# pos_inds = torch.nonzero(
# assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique()
# neg_inds = torch.nonzero(
# assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique()
# pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1
# pos_gt_bboxes = gt_bboxes[pos_assigned_gt_inds.long(), :]
# # label targets
# labels = gt_bboxes.new_full((num_bboxes,),
# self.num_classes,
# dtype=torch.long)
# labels[pos_inds] = gt_labels[pos_assigned_gt_inds]
# label_weights = gt_bboxes.new_zeros(num_bboxes)
# label_weights[pos_inds] = 1
# label_weights[neg_inds] = 1
# if not with_neg_cls:
# label_weights[neg_inds] = 0
# # bbox targets
# bbox_targets = torch.zeros_like(bbox_pred)
# bbox_weights = torch.zeros_like(bbox_pred)
# bbox_weights[pos_inds] = 1.0
# # DETR regress the relative position of boxes (cxcywh) in the image.
# # Thus the learning target should be normalized by the image size, also
# # the box format should be converted from defaultly x1y1x2y2 to cxcywh.
# pos_gt_bboxes_normalized = pos_gt_bboxes / factor
# pos_gt_bboxes_targets = bbox_xyxy_to_cxcywh(pos_gt_bboxes_normalized)
# bbox_targets[pos_inds] = pos_gt_bboxes_targets
# return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
# neg_inds)
def _get_targets_single_center(self,
center: Tensor,
center_scores: Tensor,
cls_scores: Tensor,
spatial_shapes: Tensor,
gt_instances: InstanceData,
img_meta: dict) -> tuple:
"""Compute regression and classification targets for one image.
Outputs from a single decoder layer of a single feature level are used.
Args:
cls_score (Tensor): Box score logits from a single decoder layer
for one image. Shape [num_queries, cls_out_channels].
bbox_pred (Tensor): Sigmoid outputs from a single decoder layer
for one image, with normalized coordinate (cx, cy, w, h) and
shape [num_queries, 4].
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It should includes ``bboxes`` and ``labels``
attributes.
img_meta (dict): Meta information for one image.
Returns:
tuple[Tensor]: a tuple containing the following for one image.
- labels (Tensor): Labels of each image.
- label_weights (Tensor]): Label weights of each image.
- bbox_targets (Tensor): BBox targets of each image.
- bbox_weights (Tensor): BBox weights of each image.
- pos_inds (Tensor): Sampled positive indices for each image.
- neg_inds (Tensor): Sampled negative indices for each image.
"""
img_h, img_w = img_meta['img_shape']
feat_h = int(spatial_shapes[self.center_feat_indice][0]/self.center_ds_ratio)
feat_w = int(spatial_shapes[self.center_feat_indice][1]/self.center_ds_ratio)
factor = spatial_shapes.new_tensor([feat_w, feat_h]).unsqueeze(0)
# factor = center.new_tensor([img_w, img_h,]).unsqueeze(0)
gt_bboxes = gt_instances.bboxes
gt_labels = gt_instances.labels
gt_cxcy = bbox_xyxy_to_cxcywh(gt_bboxes)[:, :2]
gt_cxcy[:, 0] = gt_cxcy[:, 0] * feat_w / img_w
gt_cxcy[:, 1] = gt_cxcy[:, 1] * feat_h / img_h
gt_cxcy= gt_cxcy.long()
gt_bboxes[:, 2:] -= 0.1
gt_bboxes_x = gt_bboxes[:, 0::2]
gt_bboxes_y = gt_bboxes[:, 1::2]
gt_bboxes_x = torch.floor(gt_bboxes_x * feat_w / img_w)
gt_bboxes_y = torch.floor(gt_bboxes_y * feat_h / img_h)
gt_bboxes_x = gt_bboxes_x.long()
gt_bboxes_y = gt_bboxes_y.long()
heat_map = gt_bboxes.new_full((feat_h, feat_w), 0, dtype=torch.long)
for t_i in range(gt_bboxes.size(0)):
# if gt_bboxes_x[t_i, 1] - gt_bboxes_x[t_i, 0] > 3:
# gt_bboxes_x[t_i,1] = gt_cxcy[t_i, 0] + 1
# gt_bboxes_x[t_i,0] = gt_cxcy[t_i, 0] - 1
# if gt_bboxes_y[t_i,1] - gt_bboxes_y[t_i,0] > 3:
# gt_bboxes_y[t_i,1] = gt_cxcy[t_i, 1] + 1
# gt_bboxes_y[t_i,0] = gt_cxcy[t_i, 1] - 1
grid_y, grid_x = torch.meshgrid(
torch.linspace(gt_bboxes_y[t_i, 0], gt_bboxes_y[t_i, 1], gt_bboxes_y[t_i, 1]+1-gt_bboxes_y[t_i, 0],
dtype=torch.long, device=gt_cxcy.device),
torch.linspace(gt_bboxes_x[t_i, 0], gt_bboxes_x[t_i, 1], gt_bboxes_x[t_i, 1]+1-gt_bboxes_x[t_i, 0],
dtype=torch.long, device=gt_cxcy.device))
grid = torch.cat([grid_y.unsqueeze(-1), grid_x.unsqueeze(-1)], -1)
grid = grid.view(-1, 2)
value_input = gt_bboxes.new_full((grid.size(0),), -1, dtype=torch.long)
heat_map.index_put_((grid[:,0],grid[:,1]), value_input)
# cls_labels.index_put_((grid[:,0],grid[:,1]), value_input)
value_input = gt_bboxes.new_full((gt_cxcy.size(0),), 1, dtype=torch.long)
heat_map = heat_map.index_put_((gt_cxcy[:,1], gt_cxcy[:,0]), value_input)
heat_map = heat_map.view(-1)
mask = heat_map != -1
# new_center_score = center_score[mask]
# heat_map = heat_map[mask]
pos_inds = torch.where(heat_map == 1)[0]
ignore_inds = torch.where(heat_map == -1)[0]
neg_inds = torch.where(heat_map == 0)[0]
cls_labels = gt_bboxes.new_full((feat_h, feat_w), self.num_classes, dtype=torch.long)
cls_labels = cls_labels.index_put_((gt_cxcy[:,1], gt_cxcy[:,0]), gt_labels)
cls_labels = cls_labels.view(-1)
center_labels = gt_bboxes.new_full((heat_map.size(0),), 1, dtype=torch.long)
center_labels[pos_inds] = 0
label_weights = gt_bboxes.new_ones(heat_map.size(0))
if ignore_inds.numel() > 0:
label_weights[ignore_inds] = 0
if self.neg_hard_num>0:
if self.use_center:
_, indices = torch.sort(center_scores, dim=0, descending=True)
else:
cls_scores_max = torch.max(cls_scores, dim=-1, keepdim=True)[0]
_, indices = torch.sort(cls_scores_max, dim=0, descending=True)
sorted_inds = indices.squeeze()
non_neg_inds = torch.cat([pos_inds,ignore_inds],dim=0)
mask = torch.isin(sorted_inds, non_neg_inds)
remaining_inds = sorted_inds[~mask]
neg_hard_inds = remaining_inds[:self.neg_hard_num]
new_inds = torch.cat([pos_inds, neg_hard_inds], dim=0)
neg_inds = neg_hard_inds
center_labels = center_labels[new_inds]
cls_labels = cls_labels[new_inds]
center_scores = center_scores[new_inds]
cls_scores = cls_scores[new_inds]
label_weights = gt_bboxes.new_ones(new_inds.size(0))
return (center_labels, cls_labels, center_scores, cls_scores, label_weights, pos_inds, neg_inds)
def _get_targets_single_pixel(self,
seg_scores: Tensor,
abu_scores: Optional[Tensor],
spatial_shapes: Tensor,
gt_seg: Tensor,
gt_abu: Optional[Tensor],
img_meta: dict) -> tuple:
assert seg_scores.shape[0] == gt_seg.numel()
assert spatial_shapes[0][0]*spatial_shapes[0][1] == gt_seg.numel()
gt_seg = gt_seg.view(-1,1)
pos_inds = torch.where(gt_seg >0)[0]
seg_labels = gt_seg.detach().clone()
seg_labels[gt_seg >0] = 0
seg_labels[gt_seg == 0] = 1
seg_labels = seg_labels.long()
# gt_abu= gt_abu.view(-1,1)
# pos_inds = torch.where(gt_abu > 0)[0]
if self.seg_neg_hard_num== 0:
neg_inds = torch.where(gt_seg == 0)[0]
seg_label_weights = seg_scores.new_ones(seg_labels.size(0))
else:
seg_scores_max = torch.max(seg_scores, dim=-1, keepdim=True)[0]
_, indices = torch.sort(seg_scores_max, dim=0, descending=True)
sorted_inds = indices.squeeze()
mask = torch.isin(sorted_inds, pos_inds)
remaining_inds = sorted_inds[~mask]
neg_hard_inds = remaining_inds[:self.seg_neg_hard_num]
neg_inds = neg_hard_inds
new_inds = torch.cat([pos_inds, neg_hard_inds], dim=0)
seg_scores = seg_scores[new_inds]
seg_labels = seg_labels[new_inds]
seg_label_weights = seg_scores.new_ones(seg_labels.size(0))
if self.predict_abundance:
gt_abu = gt_abu.view(-1,1)
abu_scores = abu_scores[pos_inds]
abu_labels = gt_abu[pos_inds]*0.5+0.25
abu_label_weights = seg_scores.new_ones(abu_labels.size(0))
else:
abu_scores = None
abu_labels = None
abu_label_weights = None
return seg_scores, seg_labels, seg_label_weights,abu_scores, abu_labels, abu_label_weights, pos_inds, neg_inds
# def _get_targets_single_bbox(self,
# cls_score: Tensor,
# bbox_pred: Tensor,
# gt_instances: InstanceData,
# img_meta: dict) -> tuple:
# """Compute regression and classification targets for one image.
#
# Outputs from a single decoder layer of a single feature level are used.
#
# Args:
# cls_score (Tensor): Box score logits from a single decoder layer
# for one image. Shape [num_queries, cls_out_channels].
# bbox_pred (Tensor): Sigmoid outputs from a single decoder layer
# for one image, with normalized coordinate (cx, cy, w, h) and
# shape [num_queries, 4].
# gt_instances (:obj:`InstanceData`): Ground truth of instance
# annotations. It should includes ``bboxes`` and ``labels``
# attributes.
# img_meta (dict): Meta information for one image.
#
# Returns:
# tuple[Tensor]: a tuple containing the following for one image.
#
# - labels (Tensor): Labels of each image.
# - label_weights (Tensor]): Label weights of each image.
# - bbox_targets (Tensor): BBox targets of each image.
# - bbox_weights (Tensor): BBox weights of each image.
# - pos_inds (Tensor): Sampled positive indices for each image.
# - neg_inds (Tensor): Sampled negative indices for each image.
# """
# img_h, img_w = img_meta['img_shape']
# factor = bbox_pred.new_tensor([img_w, img_h, img_w,
# img_h]).unsqueeze(0)
# num_bboxes = bbox_pred.size(0)
# # convert bbox_pred from xywh, normalized to xyxy, unnormalized
# bbox_pred = bbox_cxcywh_to_xyxy(bbox_pred)
# bbox_pred = bbox_pred * factor
#
# pred_instances = InstanceData(scores=cls_score, bboxes=bbox_pred,priors=bbox_pred)
# # assigner and sampler
# assign_result = self.bbox_assigner.assign(
# pred_instances=pred_instances,
# gt_instances=gt_instances,
# img_meta=img_meta)
# gt_bboxes = gt_instances.bboxes
# gt_labels = gt_instances.labels
# pos_inds = torch.nonzero(
# assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique()
# neg_inds = torch.nonzero(
# assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique()
# pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1
# pos_gt_bboxes = gt_bboxes[pos_assigned_gt_inds.long(), :]
#
# # bbox targets
# bbox_targets = torch.zeros_like(bbox_pred)
# bbox_weights = torch.zeros_like(bbox_pred)
# bbox_weights[pos_inds] = 1.0
#
# # DETR regress the relative position of boxes (cxcywh) in the image.
# # Thus the learning target should be normalized by the image size, also
# # the box format should be converted from defaultly x1y1x2y2 to cxcywh.
# pos_gt_bboxes_normalized = pos_gt_bboxes / factor
# pos_gt_bboxes_targets = bbox_xyxy_to_cxcywh(pos_gt_bboxes_normalized)
# bbox_targets[pos_inds] = pos_gt_bboxes_targets
# return (bbox_targets, bbox_weights, pos_inds, neg_inds)
def loss_and_predict(
self, hidden_states: Tuple[Tensor],
batch_data_samples: SampleList) -> Tuple[dict, InstanceList]:
"""Perform forward propagation of the head, then calculate loss and
predictions from the features and data samples. Over-write because
img_metas are needed as inputs for bbox_head.
Args:
hidden_states (tuple[Tensor]): Feature from the transformer
decoder, has shape (num_decoder_layers, bs, num_queries, dim).
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains
the meta information of each image and corresponding
annotations.
Returns:
tuple: the return value is a tuple contains:
- losses: (dict[str, Tensor]): A dictionary of loss components.
- predictions (list[:obj:`InstanceData`]): Detection
results of each image after the post process.
"""
batch_gt_instances = []
batch_img_metas = []
for data_sample in batch_data_samples:
batch_img_metas.append(data_sample.metainfo)
batch_gt_instances.append(data_sample.gt_instances)
outs = self(hidden_states)
loss_inputs = outs + (batch_gt_instances, batch_img_metas)
losses = self.loss_by_feat(*loss_inputs)
predictions = self.predict_by_feat(
*outs, batch_img_metas=batch_img_metas)
return losses, predictions
def forward(self, hidden_states: Tensor,
references: List[Tensor],
topk_cls_scores: Tensor,) -> Tuple[Tensor]:
"""Forward function.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, bs, num_queries, dim).
references (list[Tensor]): List of the reference from the decoder.
The first reference is the `init_reference` (initial) and the
other num_decoder_layers(6) references are `inter_references`
(intermediate). The `init_reference` has shape (bs,
num_queries, 4) when `as_two_stage` of the detector is `True`,
otherwise (bs, num_queries, 2). Each `inter_reference` has
shape (bs, num_queries, 4) when `with_box_refine` of the
detector is `True`, otherwise (bs, num_queries, 2). The
coordinates are arranged as (cx, cy) when the last dimension is
2, and (cx, cy, w, h) when it is 4.
Returns:
tuple[Tensor]: results of head containing the following tensor.
- all_layers_outputs_classes (Tensor): Outputs from the
classification head, has shape (num_decoder_layers, bs,
num_queries, cls_out_channels).
- all_layers_outputs_coords (Tensor): Sigmoid outputs from the
regression head with normalized coordinate format (cx, cy, w,
h), has shape (num_decoder_layers, bs, num_queries, 4) with the
last dimension arranged as (cx, cy, w, h).
"""
all_layers_outputs_coords = []
for layer_id in range(hidden_states.shape[0]):
reference = inverse_sigmoid(references[layer_id])
# NOTE The last reference will not be used.
hidden_state = hidden_states[layer_id]
tmp_reg_preds = self.reg_branches[layer_id](hidden_state)
if reference.shape[-1] == 4:
# When `layer` is 0 and `as_two_stage` of the detector
# is `True`, or when `layer` is greater than 0 and
# `with_box_refine` of the detector is `True`.
tmp_reg_preds += reference
else:
# When `layer` is 0 and `as_two_stage` of the detector
# is `False`, or when `layer` is greater than 0 and
# `with_box_refine` of the detector is `False`.
assert reference.shape[-1] == 2
tmp_reg_preds[..., :2] += reference
outputs_coord = tmp_reg_preds.sigmoid()
all_layers_outputs_coords.append(outputs_coord)
all_layers_outputs_classes = topk_cls_scores.unsqueeze(0).repeat(hidden_states.shape[0],1,1,1)
all_layers_outputs_coords = torch.stack(all_layers_outputs_coords)
return all_layers_outputs_classes, all_layers_outputs_coords
def loss(self, hidden_states: Tensor,
references: List[Tensor],
centers: Tensor,
center_scores: Tensor,
topk_centers_scores: Tensor,
cls_scores: Tensor,
topk_cls_scores: Tensor,
seg_scores:Optional[Tensor],
abu_scores: Optional[Tensor],
batch_data_samples: SampleList,
dn_meta: Dict[str, int],
spatial_shapes: Tensor) -> dict:
"""Perform forward propagation and loss calculation of the detection
head on the queries of the upstream network.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, bs, num_queries_total,
dim), where `num_queries_total` is the sum of
`num_denoising_queries` and `num_matching_queries` when
`self.training` is `True`, else `num_matching_queries`.
references (list[Tensor]): List of the reference from the decoder.
The first reference is the `init_reference` (initial) and the
other num_decoder_layers(6) references are `inter_references`
(intermediate). The `init_reference` has shape (bs,
num_queries_total, 4) and each `inter_reference` has shape
(bs, num_queries, 4) with the last dimension arranged as
(cx, cy, w, h).
enc_outputs_class (Tensor): The score of each point on encode
feature map, has shape (bs, num_feat_points, cls_out_channels).
enc_outputs_coord (Tensor): The proposal generate from the
encode feature map, has shape (bs, num_feat_points, 4) with the
last dimension arranged as (cx, cy, w, h).
batch_data_samples (list[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
Returns:
dict: A dictionary of loss components.
"""
batch_gt_instances = []
batch_img_metas = []
batch_gt_seg = []
batch_gt_abu = []
for data_sample in batch_data_samples:
batch_img_metas.append(data_sample.metainfo)
batch_gt_instances.append(data_sample.gt_instances)
if self.predict_segmentation:
batch_gt_seg.append(data_sample.gt_pixel.seg)
else:
batch_gt_seg.append(None)
if self.predict_abundance:
batch_gt_abu.append(data_sample.gt_pixel.abu)
else:
batch_gt_abu.append(None)
outs = self(hidden_states, references, topk_cls_scores)
loss_inputs = outs + (centers, center_scores, topk_centers_scores, cls_scores, topk_cls_scores,
seg_scores,abu_scores,
batch_gt_instances, batch_img_metas, dn_meta, spatial_shapes,batch_gt_seg,batch_gt_abu)
losses = self.loss_by_feat(*loss_inputs)
return losses
def loss_by_feat(
self,
all_layers_cls_scores: Tensor,
all_layers_bbox_preds: Tensor,
centers: Tensor,
center_scores: Tensor,
topk_centers_scores: Tensor,
cls_scores: Tensor,
topk_cls_scores: Tensor,
seg_scores: Optional[Tensor],
abu_scores: Optional[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
dn_meta: Dict[str, int],
spatial_shapes: Tensor,
batch_gt_seg: List,
batch_gt_abu: List,
batch_gt_instances_ignore: OptInstanceList = None,
) -> Dict[str, Tensor]:
"""Loss function.
Args:
all_layers_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs,
num_queries_total, cls_out_channels), where
`num_queries_total` is the sum of `num_denoising_queries`
and `num_matching_queries`.
all_layers_bbox_preds (Tensor): Regression outputs of all decoder
layers. Each is a 4D-tensor with normalized coordinate format
(cx, cy, w, h) and has shape (num_decoder_layers, bs,
num_queries_total, 4).
enc_cls_scores (Tensor): The score of each point on encode
feature map, has shape (bs, num_feat_points, cls_out_channels).
enc_bbox_preds (Tensor): The proposal generate from the encode
feature map, has shape (bs, num_feat_points, 4) with the last
dimension arranged as (cx, cy, w, h).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
# extract denoising and matching part of outputs
weight_bbox = 0
weight_cls = 0
# (all_layers_matching_cls_scores, all_layers_matching_bbox_preds,
# all_layers_denoising_cls_scores, all_layers_denoising_bbox_preds) = \
# self.split_outputs(all_layers_cls_scores, all_layers_bbox_preds, dn_meta)
# (matching_cls_scores, all_layers_matching_bbox_preds,
# denoising_cls_scores, all_layers_denoising_bbox_preds) = \
# self.split_outputsv1(cls_scores, all_layers_bbox_preds, dn_meta)
loss_dict = dict()
loss_center, loss_cls = self.loss_center(centers,
center_scores,
cls_scores,
spatial_shapes,
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas)
if self.use_center:
loss_dict['loss_center'] = loss_center
loss_dict['loss_cls'] = loss_cls
if loss_cls <= self.loss_center_th:
weight_bbox = 1
if self.predict_segmentation:
# seg_scores = seg_scores.sigmoid()
if self.predict_abundance:
abu_scores = abu_scores.sigmoid()
loss_seg, loss_abu = self.loss_pixel(seg_scores, abu_scores, spatial_shapes,
batch_gt_seg,batch_gt_abu,
batch_img_metas=batch_img_metas)
loss_dict['loss_seg'] = loss_seg*weight_bbox
if self.predict_abundance:
loss_dict['loss_abu'] = loss_abu*weight_bbox
reg_targets = self.get_dn_targets(batch_gt_instances, batch_img_metas, dn_meta)
dn_losses_bbox, dn_losses_iou = multi_apply(
self._loss_dn_single,
all_layers_bbox_preds,
reg_targets=reg_targets,
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas,
dn_meta=dn_meta)
for num_dec_layer, (loss_bbox_i, loss_iou_i) in \
enumerate(zip(dn_losses_bbox, dn_losses_iou)):
loss_dict[f'd{num_dec_layer+1}.dn_loss_bbox'] = loss_bbox_i*weight_bbox
if self.loss_iou is not None:
loss_dict[f'd{num_dec_layer+1}.dn_loss_iou'] = loss_iou_i*weight_bbox
return loss_dict
# def loss_by_feat_single(self, cls_scores: Tensor, bbox_preds: Tensor,
# batch_gt_instances: InstanceList,
# batch_img_metas: List[dict]) -> Tuple[Tensor]:
# """Loss function for outputs from a single decoder layer of a single
# feature level.
#
# Args:
# cls_scores (Tensor): Box score logits from a single decoder layer
# for all images, has shape (bs, num_queries, cls_out_channels).
# bbox_preds (Tensor): Sigmoid outputs from a single decoder layer
# for all images, with normalized coordinate (cx, cy, w, h) and
# shape (bs, num_queries, 4).
# batch_gt_instances (list[:obj:`InstanceData`]): Batch of
# gt_instance. It usually includes ``bboxes`` and ``labels``
# attributes.
# batch_img_metas (list[dict]): Meta information of each image, e.g.,
# image size, scaling factor, etc.
#
# Returns:
# Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and
# `loss_iou`.
# """
# num_imgs = cls_scores.size(0)
# cls_scores_list = [cls_scores[i] for i in range(num_imgs)]
# bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)]
# cls_reg_targets = self.get_targets_bbox(cls_scores_list, bbox_preds_list,
# batch_gt_instances, batch_img_metas)
# (bbox_targets_list, bbox_weights_list,
# num_total_pos, num_total_neg) = cls_reg_targets
# bbox_targets = torch.cat(bbox_targets_list, 0)
# bbox_weights = torch.cat(bbox_weights_list, 0)
#
#
# # Compute the average number of gt boxes across all gpus, for
# # normalization purposes
# num_total_pos = bbox_targets.new_tensor([num_total_pos])
# num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()
#
# # construct factors used for rescale bboxes
# factors = []
# for img_meta, bbox_pred in zip(batch_img_metas, bbox_preds):
# img_h, img_w, = img_meta['img_shape']
# factor = bbox_pred.new_tensor([img_w, img_h, img_w,
# img_h]).unsqueeze(0).repeat(
# bbox_pred.size(0), 1)
# factors.append(factor)
# factors = torch.cat(factors, 0)
#
# # DETR regress the relative position of boxes (cxcywh) in the image,
# # thus the learning target is normalized by the image size. So here
# # we need to re-scale them for calculating IoU loss
# bbox_preds = bbox_preds.reshape(-1, 4)
# bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors
# bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors
#
# # regression IoU loss, defaultly GIoU loss
# loss_iou = self.loss_iou(
# bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos)
#
# # regression L1 loss
# loss_bbox = self.loss_bbox(
# bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos)
# return loss_bbox, loss_iou
def loss_center(self,
centers: Tensor,
center_scores: Tensor,
cls_scores: Tensor,
spatial_shapes: Tensor,
batch_gt_instances: InstanceList,
batch_img_metas: List[dict]) -> Tuple[Tensor]:
"""Loss function for outputs from a single decoder layer of a single
feature level.
Args:
cls_scores (Tensor): Box score logits from a single decoder layer
for all images, has shape (bs, num_queries, cls_out_channels).
bbox_preds (Tensor): Sigmoid outputs from a single decoder layer
for all images, with normalized coordinate (cx, cy, w, h) and
shape (bs, num_queries, 4).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
Returns:
Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and
`loss_iou`.
"""
num_imgs = centers.size(0)
if center_scores is None:
center_scores_list = [cls_scores[i] for i in range(num_imgs)]
else:
center_scores_list = [center_scores[i] for i in range(num_imgs)]
cls_scores_list = [cls_scores[i] for i in range(num_imgs)]
# center_scores =center_scores.view(-1, center_scores.shape[2])
# cls_scores = cls_scores.view(-1, cls_scores.shape[2])
centers_list = [centers[i] for i in range(num_imgs)]
spatial_shapes_list = [spatial_shapes for i in range(num_imgs)]
(center_labels_list, cls_labels_list, center_scores_list, cls_scores_list, label_weights_list, pos_inds_list, neg_inds_list,) = multi_apply(self._get_targets_single_center,
centers_list, center_scores_list, cls_scores_list, spatial_shapes_list, batch_gt_instances, batch_img_metas)
num_total_pos = sum((inds.numel() for inds in pos_inds_list))
num_total_neg = sum((inds.numel() for inds in neg_inds_list))
center_labels = torch.cat(center_labels_list, 0)
cls_labels = torch.cat(cls_labels_list, 0)
center_scores = torch.cat(center_scores_list, 0)
cls_scores = torch.cat(cls_scores_list, 0)
label_weights = torch.cat(label_weights_list, 0)
# construct weighted avg_factor to match with the official DETR repo
cls_avg_factor = num_total_pos * 1.0 + \
num_total_neg * 0
if self.sync_cls_avg_factor:
cls_avg_factor = reduce_mean(
centers.new_tensor([cls_avg_factor]))
cls_avg_factor = max(cls_avg_factor, 1)
if self.use_center:
loss_center = self.loss_center_cls(
center_scores, center_labels, label_weights, avg_factor=cls_avg_factor)
else:
loss_center = None
loss_cls = self.loss_cls(
cls_scores, cls_labels, label_weights, avg_factor=cls_avg_factor)
return loss_center, loss_cls
def loss_pixel(self,
seg_scores: Tensor,
abu_scores: Tensor,
spatial_shapes: Tensor,
batch_gt_seg: List,
batch_gt_abu: List,
batch_img_metas: List) -> Tuple[Tensor]:
num_imgs = seg_scores.size(0)
seg_scores_list = [seg_scores[i] for i in range(num_imgs)]
if abu_scores is not None:
abu_scores_list = [abu_scores[i] for i in range(num_imgs)]
else:
abu_scores_list = [None for i in range(num_imgs)]
spatial_shapes_list = [spatial_shapes for i in range(num_imgs)]
(seg_scores_list, seg_labels_list, seg_label_weights_list,abu_scores_list, abu_labels_list, abu_label_weights_list, pos_inds_list, neg_inds_list) = multi_apply(self._get_targets_single_pixel,
seg_scores_list, abu_scores_list,
spatial_shapes_list,
batch_gt_seg,
batch_gt_abu,
batch_img_metas)
num_total_pos = sum((inds.numel() for inds in pos_inds_list))
num_total_neg = sum((inds.numel() for inds in neg_inds_list))
seg_scores = torch.cat(seg_scores_list, 0)
seg_labels = torch.cat(seg_labels_list, 0)
seg_label_weights = torch.cat(seg_label_weights_list, 0)
cls_avg_factor = num_total_pos * 1.0 + num_total_neg * 0
if self.sync_cls_avg_factor:
cls_avg_factor = reduce_mean(
seg_scores.new_tensor([cls_avg_factor]))
cls_avg_factor = max(cls_avg_factor, 1)
loss_seg = self.loss_seg(
seg_scores, seg_labels, seg_label_weights, avg_factor=cls_avg_factor)
if self.predict_abundance:
abu_scores = torch.cat(abu_scores_list, 0)
abu_labels = torch.cat(abu_labels_list, 0)
abu_label_weights = torch.cat(abu_label_weights_list, 0)
# cls_avg_factor = num_total_pos * 1.0
# if self.sync_cls_avg_factor:
# cls_avg_factor = reduce_mean(
# seg_scores.new_tensor([cls_avg_factor]))
# cls_avg_factor = max(cls_avg_factor, 1)
loss_abu = self.loss_abu(
abu_scores, abu_labels, abu_label_weights)
else:
loss_abu = None
return loss_seg, loss_abu
# def get_targets(self, cls_scores_list: List[Tensor],
# bbox_preds_list: List[Tensor],
# batch_gt_instances: InstanceList,
# batch_img_metas: List[dict],
# with_neg_cls:bool=True,
# assigner_type:str = None) -> tuple:
# """Compute regression and classification targets for a batch image.
#
# Outputs from a single decoder layer of a single feature level are used.
#
# Args:
# cls_scores_list (list[Tensor]): Box score logits from a single
# decoder layer for each image, has shape [num_queries,
# cls_out_channels].
# bbox_preds_list (list[Tensor]): Sigmoid outputs from a single
# decoder layer for each image, with normalized coordinate
# (cx, cy, w, h) and shape [num_queries, 4].
# batch_gt_instances (list[:obj:`InstanceData`]): Batch of
# gt_instance. It usually includes ``bboxes`` and ``labels``
# attributes.
# batch_img_metas (list[dict]): Meta information of each image, e.g.,
# image size, scaling factor, etc.
#
# Returns:
# tuple: a tuple containing the following targets.
#
# - labels_list (list[Tensor]): Labels for all images.
# - label_weights_list (list[Tensor]): Label weights for all images.
# - bbox_targets_list (list[Tensor]): BBox targets for all images.
# - bbox_weights_list (list[Tensor]): BBox weights for all images.
# - num_total_pos (int): Number of positive samples in all images.
# - num_total_neg (int): Number of negative samples in all images.
# """
# (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
# pos_inds_list,
# neg_inds_list) = multi_apply(self._get_targets_single,
# cls_scores_list, bbox_preds_list,
# batch_gt_instances, batch_img_metas,
# with_neg_cls=with_neg_cls,
# assigner_type= assigner_type)
# num_total_pos = sum((inds.numel() for inds in pos_inds_list))
# num_total_neg = sum((inds.numel() for inds in neg_inds_list))
# if not with_neg_cls:
# num_total_neg = 0
# return (labels_list, label_weights_list, bbox_targets_list,
# bbox_weights_list, num_total_pos, num_total_neg)
# def get_targets_bbox(self,
# cls_scores_list: List[Tensor],
# bbox_preds_list: List[Tensor],
# batch_gt_instances: InstanceList,
# batch_img_metas: List[dict]) -> tuple:
# """Compute regression and classification targets for a batch image.
#
# Outputs from a single decoder layer of a single feature level are used.
#
# Args:
# cls_scores_list (list[Tensor]): Box score logits from a single
# decoder layer for each image, has shape [num_queries,
# cls_out_channels].
# bbox_preds_list (list[Tensor]): Sigmoid outputs from a single
# decoder layer for each image, with normalized coordinate
# (cx, cy, w, h) and shape [num_queries, 4].
# batch_gt_instances (list[:obj:`InstanceData`]): Batch of
# gt_instance. It usually includes ``bboxes`` and ``labels``
# attributes.
# batch_img_metas (list[dict]): Meta information of each image, e.g.,
# image size, scaling factor, etc.
#
# Returns:
# tuple: a tuple containing the following targets.
#
# - labels_list (list[Tensor]): Labels for all images.
# - label_weights_list (list[Tensor]): Label weights for all images.
# - bbox_targets_list (list[Tensor]): BBox targets for all images.
# - bbox_weights_list (list[Tensor]): BBox weights for all images.
# - num_total_pos (int): Number of positive samples in all images.
# - num_total_neg (int): Number of negative samples in all images.
# """
# (bbox_targets_list, bbox_weights_list, pos_inds_list,
# neg_inds_list) = multi_apply(self._get_targets_single_bbox, cls_scores_list,
# bbox_preds_list,
# batch_gt_instances, batch_img_metas)
# num_total_pos = sum((inds.numel() for inds in pos_inds_list))
# num_total_neg = sum((inds.numel() for inds in neg_inds_list))
# return (bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg)
def _loss_dn_single(self, dn_bbox_preds: Tensor,
reg_targets: Tuple[list, int],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
dn_meta: Dict[str, int]) -> Tuple[Tensor]:
"""Denoising loss for outputs from a single decoder layer.
Args:
dn_cls_scores (Tensor): Classification scores of a single decoder
layer in denoising part, has shape (bs, num_denoising_queries,
cls_out_channels).
dn_bbox_preds (Tensor): Regression outputs of a single decoder
layer in denoising part. Each is a 4D-tensor with normalized
coordinate format (cx, cy, w, h) and has shape
(bs, num_denoising_queries, 4).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
Returns:
Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and
`loss_iou`.
"""
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,num_total_pos) = reg_targets
bbox_targets = torch.cat(bbox_targets_list, 0)
bbox_weights = torch.cat(bbox_weights_list, 0)
# Compute the average number of gt boxes across all gpus, for
# normalization purposes
num_total_pos = dn_bbox_preds.new_tensor([num_total_pos])
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()
# construct factors used for rescale bboxes
factors = []
for img_meta, bbox_pred in zip(batch_img_metas, dn_bbox_preds):
img_h, img_w = img_meta['img_shape']
factor = bbox_pred.new_tensor([img_w, img_h, img_w,
img_h]).unsqueeze(0).repeat(
bbox_pred.size(0), 1)
factors.append(factor)
factors = torch.cat(factors)
# DETR regress the relative position of boxes (cxcywh) in the image,
# thus the learning target is normalized by the image size. So here
# we need to re-scale them for calculating IoU loss
bbox_preds = dn_bbox_preds.reshape(-1, 4)
bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors
bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors
# regression IoU loss, defaultly GIoU loss
if self.loss_iou is not None:
loss_iou = self.loss_iou(
bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos)
else:
loss_iou = None
# regression L1 loss
loss_bbox = self.loss_bbox(
bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos)
return loss_bbox, loss_iou
def get_dn_targets(self, batch_gt_instances: InstanceList,
batch_img_metas: dict, dn_meta: Dict[str,
int]) -> tuple:
"""Get targets in denoising part for a batch of images.
Args:
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
Returns:
tuple: a tuple containing the following targets.
- labels_list (list[Tensor]): Labels for all images.
- label_weights_list (list[Tensor]): Label weights for all images.
- bbox_targets_list (list[Tensor]): BBox targets for all images.
- bbox_weights_list (list[Tensor]): BBox weights for all images.
- num_total_pos (int): Number of positive samples in all images.
- num_total_neg (int): Number of negative samples in all images.
"""
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,pos_inds_list) = multi_apply(
self._get_dn_targets_single,
batch_gt_instances,
batch_img_metas,
dn_meta=dn_meta)
num_total_pos = sum((inds.numel() for inds in pos_inds_list))
return (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos,)
def _get_dn_targets_single(self, gt_instances: InstanceData,
img_meta: dict, dn_meta: Dict[str,
int]) -> tuple:
"""Get targets in denoising part for one image.
Args:
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It should includes ``bboxes`` and ``labels``
attributes.
img_meta (dict): Meta information for one image.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
Returns:
tuple[Tensor]: a tuple containing the following for one image.
- labels (Tensor): Labels of each image.
- label_weights (Tensor]): Label weights of each image.
- bbox_targets (Tensor): BBox targets of each image.
- bbox_weights (Tensor): BBox weights of each image.
- pos_inds (Tensor): Sampled positive indices for each image.
- neg_inds (Tensor): Sampled negative indices for each image.
"""
gt_bboxes = gt_instances.bboxes
gt_labels = gt_instances.labels
num_groups = dn_meta['num_denoising_groups']
num_denoising_queries = dn_meta['num_denoising_queries']
num_queries_each_group = int(num_denoising_queries / num_groups)
device = gt_bboxes.device
if len(gt_labels) > 0:
t = torch.arange(len(gt_labels), dtype=torch.long, device=device)
t = t.unsqueeze(0).repeat(num_groups, 1)
pos_assigned_gt_inds = t.flatten()
pos_inds = torch.arange(num_groups, dtype=torch.long, device=device)
pos_inds = pos_inds.unsqueeze(1) * num_queries_each_group + t
pos_inds = pos_inds.flatten()
else:
pos_inds = pos_assigned_gt_inds = \
gt_bboxes.new_tensor([], dtype=torch.long)
# label targets
labels = gt_bboxes.new_full((num_denoising_queries, ),
self.num_classes,
dtype=torch.long)
labels[pos_inds] = gt_labels[pos_assigned_gt_inds]
label_weights = gt_bboxes.new_zeros(num_denoising_queries)
label_weights[pos_inds] = 1.0
# bbox targets
bbox_targets = torch.zeros(num_denoising_queries, 4, device=device)
bbox_weights = torch.zeros(num_denoising_queries, 4, device=device)
bbox_weights[pos_inds] = 1.0
img_h, img_w = img_meta['img_shape']
# DETR regress the relative position of boxes (cxcywh) in the image.
# Thus the learning target should be normalized by the image size, also
# the box format should be converted from defaultly x1y1x2y2 to cxcywh.
factor = gt_bboxes.new_tensor([img_w, img_h, img_w,
img_h]).unsqueeze(0)
gt_bboxes_normalized = gt_bboxes / factor
gt_bboxes_targets = bbox_xyxy_to_cxcywh(gt_bboxes_normalized)
bbox_targets[pos_inds] = gt_bboxes_targets.repeat([num_groups, 1])
return (labels, label_weights,bbox_targets, bbox_weights, pos_inds)
@staticmethod
def split_outputs(all_layers_cls_scores: Tensor,
all_layers_bbox_preds: Tensor,
dn_meta: Dict[str, int]) -> Tuple[Tensor]:
"""Split outputs of the denoising part and the matching part.
For the total outputs of `num_queries_total` length, the former
`num_denoising_queries` outputs are from denoising queries, and
the rest `num_matching_queries` ones are from matching queries,
where `num_queries_total` is the sum of `num_denoising_queries` and
`num_matching_queries`.
Args:
all_layers_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs,
num_queries_total, cls_out_channels).
all_layers_bbox_preds (Tensor): Regression outputs of all decoder
layers. Each is a 4D-tensor with normalized coordinate format
(cx, cy, w, h) and has shape (num_decoder_layers, bs,
num_queries_total, 4).
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'.
Returns:
Tuple[Tensor]: a tuple containing the following outputs.
- all_layers_matching_cls_scores (Tensor): Classification scores
of all decoder layers in matching part, has shape
(num_decoder_layers, bs, num_matching_queries, cls_out_channels).
- all_layers_matching_bbox_preds (Tensor): Regression outputs of
all decoder layers in matching part. Each is a 4D-tensor with
normalized coordinate format (cx, cy, w, h) and has shape
(num_decoder_layers, bs, num_matching_queries, 4).
- all_layers_denoising_cls_scores (Tensor): Classification scores
of all decoder layers in denoising part, has shape
(num_decoder_layers, bs, num_denoising_queries,
cls_out_channels).
- all_layers_denoising_bbox_preds (Tensor): Regression outputs of
all decoder layers in denoising part. Each is a 4D-tensor with
normalized coordinate format (cx, cy, w, h) and has shape
(num_decoder_layers, bs, num_denoising_queries, 4).
"""
if dn_meta is not None:
num_denoising_queries = dn_meta['num_denoising_queries']
all_layers_denoising_cls_scores = \
all_layers_cls_scores[:,:, : num_denoising_queries, :]
all_layers_denoising_bbox_preds = \
all_layers_bbox_preds[:, :, : num_denoising_queries, :]
all_layers_matching_cls_scores = \
all_layers_cls_scores[:, :, num_denoising_queries:, :]
all_layers_matching_bbox_preds = \
all_layers_bbox_preds[:, :, num_denoising_queries:, :]
else:
all_layers_denoising_cls_scores = None
all_layers_denoising_bbox_preds = None
all_layers_matching_cls_scores = all_layers_cls_scores
all_layers_matching_bbox_preds = all_layers_bbox_preds
return (all_layers_matching_cls_scores, all_layers_matching_bbox_preds,
all_layers_denoising_cls_scores,
all_layers_denoising_bbox_preds)
@staticmethod
def split_outputsv1(all_layers_cls_scores: Tensor,
all_layers_bbox_preds: Tensor,
dn_meta: Dict[str, int]) -> Tuple[Tensor]:
"""Split outputs of the denoising part and the matching part.
For the total outputs of `num_queries_total` length, the former
`num_denoising_queries` outputs are from denoising queries, and
the rest `num_matching_queries` ones are from matching queries,
where `num_queries_total` is the sum of `num_denoising_queries` and
`num_matching_queries`.
Args:
all_layers_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs,
num_queries_total, cls_out_channels).
all_layers_bbox_preds (Tensor): Regression outputs of all decoder
layers. Each is a 4D-tensor with normalized coordinate format
(cx, cy, w, h) and has shape (num_decoder_layers, bs,
num_queries_total, 4).
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'.
Returns:
Tuple[Tensor]: a tuple containing the following outputs.
- all_layers_matching_cls_scores (Tensor): Classification scores
of all decoder layers in matching part, has shape
(num_decoder_layers, bs, num_matching_queries, cls_out_channels).
- all_layers_matching_bbox_preds (Tensor): Regression outputs of
all decoder layers in matching part. Each is a 4D-tensor with
normalized coordinate format (cx, cy, w, h) and has shape
(num_decoder_layers, bs, num_matching_queries, 4).
- all_layers_denoising_cls_scores (Tensor): Classification scores
of all decoder layers in denoising part, has shape
(num_decoder_layers, bs, num_denoising_queries,
cls_out_channels).
- all_layers_denoising_bbox_preds (Tensor): Regression outputs of
all decoder layers in denoising part. Each is a 4D-tensor with
normalized coordinate format (cx, cy, w, h) and has shape
(num_decoder_layers, bs, num_denoising_queries, 4).
"""
if dn_meta is not None:
num_denoising_queries = dn_meta['num_denoising_queries']
all_layers_denoising_cls_scores = \
all_layers_cls_scores[:, : num_denoising_queries, :]
all_layers_denoising_bbox_preds = \
all_layers_bbox_preds[:, :, : num_denoising_queries, :]
all_layers_matching_cls_scores = \
all_layers_cls_scores[:, num_denoising_queries:, :]
all_layers_matching_bbox_preds = \
all_layers_bbox_preds[:, :, num_denoising_queries:, :]
else:
all_layers_denoising_cls_scores = None
all_layers_denoising_bbox_preds = None
all_layers_matching_cls_scores = all_layers_cls_scores
all_layers_matching_bbox_preds = all_layers_bbox_preds
return (all_layers_matching_cls_scores, all_layers_matching_bbox_preds,
all_layers_denoising_cls_scores,
all_layers_denoising_bbox_preds)
def predict(self,
hidden_states: Tensor,
references: List[Tensor],
centers: Tensor,
center_scores: Tensor,
topk_centers_scores: Tensor,
cls_scores: Tensor,
topk_cls_scores: Tensor,
seg_scores: Optional[Tensor],
abu_scores: Optional[Tensor],
batch_data_samples: SampleList,
rescale: bool = True) -> InstanceList:
"""Perform forward propagation and loss calculation of the detection
head on the queries of the upstream network.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, num_queries, bs, dim).
references (list[Tensor]): List of the reference from the decoder.
The first reference is the `init_reference` (initial) and the
other num_decoder_layers(6) references are `inter_references`
(intermediate). The `init_reference` has shape (bs,
num_queries, 4) when `as_two_stage` of the detector is `True`,
otherwise (bs, num_queries, 2). Each `inter_reference` has
shape (bs, num_queries, 4) when `with_box_refine` of the
detector is `True`, otherwise (bs, num_queries, 2). The
coordinates are arranged as (cx, cy) when the last dimension is
2, and (cx, cy, w, h) when it is 4.
batch_data_samples (list[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
rescale (bool, optional): If `True`, return boxes in original
image space. Defaults to `True`.
Returns:
list[obj:`InstanceData`]: Detection results of each image
after the post process.
"""
batch_img_metas = [
data_samples.metainfo for data_samples in batch_data_samples
]
outs = self(hidden_states, references, topk_cls_scores)
if self.predict_segmentation:
seg_scores = seg_scores.sigmoid()
if self.predict_abundance:
abu_scores = torch.clamp((abu_scores.sigmoid()-0.25)*2,0,1)
predictions = self.predict_by_feat(
*outs,seg_scores,abu_scores, batch_img_metas=batch_img_metas, rescale=rescale)
return predictions
def predict_by_feat(self,
all_layers_cls_scores: Tensor,
all_layers_bbox_preds: Tensor,
seg_scores: Optional[Tensor],
abu_scores: Optional[Tensor],
batch_img_metas: List[Dict],
rescale: bool = False) -> InstanceList:
"""Transform a batch of output features extracted from the head into
bbox results.
Args:
all_layers_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs, num_queries,
cls_out_channels).
all_layers_bbox_preds (Tensor): Regression outputs of all decoder
layers. Each is a 4D-tensor with normalized coordinate format
(cx, cy, w, h) and shape (num_decoder_layers, bs, num_queries,
4) with the last dimension arranged as (cx, cy, w, h).
batch_img_metas (list[dict]): Meta information of each image.
rescale (bool, optional): If `True`, return boxes in original
image space. Default `False`.
Returns:
list[obj:`InstanceData`]: Detection results of each image
after the post process.
"""
cls_scores = all_layers_cls_scores[-1]
bbox_preds = all_layers_bbox_preds[-1]
result_list = []
for img_id in range(len(batch_img_metas)):
cls_score = cls_scores[img_id]
bbox_pred = bbox_preds[img_id]
img_meta = batch_img_metas[img_id]
if self.predict_segmentation:
seg_score = seg_scores[img_id]
else:
seg_score = None
if self.predict_abundance:
abu_score = abu_scores[img_id]
else:
abu_score = None
results = self._predict_by_feat_single(cls_score, bbox_pred,
seg_score,abu_score,
img_meta, rescale)
result_list.append(results)
return result_list
def _predict_by_feat_single(self,
cls_score: Tensor,
bbox_pred: Tensor,
seg_score: Optional[Tensor],
abu_score: Optional[Tensor],
img_meta: dict,
rescale: bool = True) -> InstanceData:
"""Transform outputs from the last decoder layer into bbox predictions
for each image.
Args:
cls_score (Tensor): Box score logits from the last decoder layer
for each image. Shape [num_queries, cls_out_channels].
bbox_pred (Tensor): Sigmoid outputs from the last decoder layer
for each image, with coordinate format (cx, cy, w, h) and
shape [num_queries, 4].
img_meta (dict): Image meta info.
rescale (bool): If True, return boxes in original image
space. Default True.
Returns:
:obj:`InstanceData`: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
assert len(cls_score) == len(bbox_pred) # num_queries
max_per_img = self.test_cfg.get('max_per_img', len(cls_score))
img_shape = img_meta['img_shape']
assert self.loss_cls.use_sigmoid
cls_score = cls_score.sigmoid()
# scores, indexes = cls_score.view(-1).topk(max_per_img)
scores, indexes = torch.sort(cls_score.view(-1), descending=True)
# indexes = indexes[scores > self.score_threshold]
# scores = scores[scores > self.score_threshold]
det_labels = indexes % self.num_classes
bbox_index = torch.div(indexes, self.num_classes, rounding_mode='trunc')
bbox_pred = bbox_pred[bbox_index]
det_bboxes = bbox_cxcywh_to_xyxy(bbox_pred)
det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1]
det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0]
det_bboxes[:, 0::2].clamp_(min=0, max=img_shape[1])
det_bboxes[:, 1::2].clamp_(min=0, max=img_shape[0])
if self.use_nms:
if det_labels.numel() > 0:
bboxes_scores, keep = batched_nms(det_bboxes, scores.contiguous(), det_labels, self.test_nms, class_agnostic=(not self.class_wise_nms))
if keep.numel() > max_per_img:
bboxes_scores = bboxes_scores[:max_per_img]
det_labels = det_labels[keep][:max_per_img]
else:
det_labels = det_labels[keep]
det_bboxes = bboxes_scores[:, :-1]
scores = bboxes_scores[:, -1]
if self.pre_bboxes_round:
det_bboxes = adjust_bbox_to_pixel(det_bboxes)
if rescale:
# assert img_meta.get('scale_factor') is not None
# det_bboxes /= det_bboxes.new_tensor(
# img_meta['scale_factor']).repeat((1, 2))
# rw by lzx
if img_meta.get('scale_factor') is not None:
det_bboxes /= det_bboxes.new_tensor(
img_meta['scale_factor']).repeat((1, 2))
if self.predict_segmentation:
img_h, img_w = img_meta['ori_shape'][:2]
seg_score = seg_score.view(img_h, img_w)
seg_mask=seg_score>self.mask_threshold
N = det_bboxes.size(0)
im_mask = torch.zeros(
N,
img_shape[0],
img_shape[1],
device=det_bboxes.device,
dtype=torch.bool)
for i in range(N):
x0, y0, x1, y1 = det_bboxes[i,:]
x0 = max(int(x0)-self.mask_extend_pixel,0)
x1 = min(int(x1)+self.mask_extend_pixel,img_w)
y0 = max(int(y0)-self.mask_extend_pixel,0)
y1 = min(int(y1)+self.mask_extend_pixel,img_h)
im_mask[i, y0:y1,x0:x1] =seg_mask[y0:y1,x0:x1 ]
new_mask = torch.sum(im_mask,dim=0)
seg_score_new = seg_score.clone().detach()
seg_score_new[new_mask==0] = 0
if self.save_path is not None:
img_name=img_meta['img_path'].split('/')[-1].replace('.npy','').replace('.png','').replace('.jpg','').replace('.mat','')
sio.savemat(os.path.join(self.save_path,img_name+'_seg_scoremap.mat'),
{'data':seg_score.detach().cpu().numpy()})
sio.savemat(os.path.join(self.save_path,img_name+'_seg_predictionmap.mat'),
{'data':seg_score_new.detach().cpu().numpy()})
if self.predict_abundance:
abu_score = abu_score.view(img_h, img_w)
abu_score_new = abu_score.clone().detach()
abu_score_new[new_mask == 0] = 0
sio.savemat(os.path.join(self.save_path, img_name + '_abu_scoremap.mat'),
{'data': abu_score.detach().cpu().numpy()})
sio.savemat(os.path.join(self.save_path, img_name + '_abu_predictionmap.mat'),
{'data': seg_score_new.detach().cpu().numpy()})
results = InstanceData()
results.bboxes = det_bboxes
results.scores = scores
results.labels = det_labels
if self.predict_segmentation:
results.masks = im_mask
return results