|
|
|
from typing import List, Optional, Sequence, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmcv.cnn import ConvModule, Scale |
|
from mmengine.config import ConfigDict |
|
from mmengine.structures import InstanceData |
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS, TASK_UTILS |
|
from mmdet.structures.bbox import bbox_overlaps |
|
from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, |
|
OptInstanceList, reduce_mean) |
|
from ..task_modules.prior_generators import anchor_inside_flags |
|
from ..task_modules.samplers import PseudoSampler |
|
from ..utils import (filter_scores_and_topk, images_to_levels, multi_apply, |
|
unmap) |
|
from .anchor_head import AnchorHead |
|
|
|
|
|
class Integral(nn.Module): |
|
"""A fixed layer for calculating integral result from distribution. |
|
|
|
This layer calculates the target location by :math: ``sum{P(y_i) * y_i}``, |
|
P(y_i) denotes the softmax vector that represents the discrete distribution |
|
y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max} |
|
|
|
Args: |
|
reg_max (int): The maximal value of the discrete set. Defaults to 16. |
|
You may want to reset it according to your new dataset or related |
|
settings. |
|
""" |
|
|
|
def __init__(self, reg_max: int = 16) -> None: |
|
super().__init__() |
|
self.reg_max = reg_max |
|
self.register_buffer('project', |
|
torch.linspace(0, self.reg_max, self.reg_max + 1)) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
"""Forward feature from the regression head to get integral result of |
|
bounding box location. |
|
|
|
Args: |
|
x (Tensor): Features of the regression head, shape (N, 4*(n+1)), |
|
n is self.reg_max. |
|
|
|
Returns: |
|
x (Tensor): Integral result of box locations, i.e., distance |
|
offsets from the box center in four directions, shape (N, 4). |
|
""" |
|
x = F.softmax(x.reshape(-1, self.reg_max + 1), dim=1) |
|
x = F.linear(x, self.project.type_as(x)).reshape(-1, 4) |
|
return x |
|
|
|
|
|
@MODELS.register_module() |
|
class GFLHead(AnchorHead): |
|
"""Generalized Focal Loss: Learning Qualified and Distributed Bounding |
|
Boxes for Dense Object Detection. |
|
|
|
GFL head structure is similar with ATSS, however GFL uses |
|
1) joint representation for classification and localization quality, and |
|
2) flexible General distribution for bounding box locations, |
|
which are supervised by |
|
Quality Focal Loss (QFL) and Distribution Focal Loss (DFL), respectively |
|
|
|
https://arxiv.org/abs/2006.04388 |
|
|
|
Args: |
|
num_classes (int): Number of categories excluding the background |
|
category. |
|
in_channels (int): Number of channels in the input feature map. |
|
stacked_convs (int): Number of conv layers in cls and reg tower. |
|
Defaults to 4. |
|
conv_cfg (:obj:`ConfigDict` or dict, optional): dictionary to construct |
|
and config conv layer. Defaults to None. |
|
norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and |
|
config norm layer. Default: dict(type='GN', num_groups=32, |
|
requires_grad=True). |
|
loss_qfl (:obj:`ConfigDict` or dict): Config of Quality Focal Loss |
|
(QFL). |
|
bbox_coder (:obj:`ConfigDict` or dict): Config of bbox coder. Defaults |
|
to 'DistancePointBBoxCoder'. |
|
reg_max (int): Max value of integral set :math: ``{0, ..., reg_max}`` |
|
in QFL setting. Defaults to 16. |
|
init_cfg (:obj:`ConfigDict` or dict or list[dict] or |
|
list[:obj:`ConfigDict`]): Initialization config dict. |
|
Example: |
|
>>> self = GFLHead(11, 7) |
|
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] |
|
>>> cls_quality_score, bbox_pred = self.forward(feats) |
|
>>> assert len(cls_quality_score) == len(self.scales) |
|
""" |
|
|
|
def __init__(self, |
|
num_classes: int, |
|
in_channels: int, |
|
stacked_convs: int = 4, |
|
conv_cfg: OptConfigType = None, |
|
norm_cfg: ConfigType = dict( |
|
type='GN', num_groups=32, requires_grad=True), |
|
loss_dfl: ConfigType = dict( |
|
type='DistributionFocalLoss', loss_weight=0.25), |
|
bbox_coder: ConfigType = dict(type='DistancePointBBoxCoder'), |
|
reg_max: int = 16, |
|
init_cfg: MultiConfig = dict( |
|
type='Normal', |
|
layer='Conv2d', |
|
std=0.01, |
|
override=dict( |
|
type='Normal', |
|
name='gfl_cls', |
|
std=0.01, |
|
bias_prob=0.01)), |
|
**kwargs) -> None: |
|
self.stacked_convs = stacked_convs |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.reg_max = reg_max |
|
super().__init__( |
|
num_classes=num_classes, |
|
in_channels=in_channels, |
|
bbox_coder=bbox_coder, |
|
init_cfg=init_cfg, |
|
**kwargs) |
|
|
|
if self.train_cfg: |
|
self.assigner = TASK_UTILS.build(self.train_cfg['assigner']) |
|
if self.train_cfg.get('sampler', None) is not None: |
|
self.sampler = TASK_UTILS.build( |
|
self.train_cfg['sampler'], default_args=dict(context=self)) |
|
else: |
|
self.sampler = PseudoSampler(context=self) |
|
|
|
self.integral = Integral(self.reg_max) |
|
self.loss_dfl = MODELS.build(loss_dfl) |
|
|
|
def _init_layers(self) -> None: |
|
"""Initialize layers of the head.""" |
|
self.relu = nn.ReLU() |
|
self.cls_convs = nn.ModuleList() |
|
self.reg_convs = nn.ModuleList() |
|
for i in range(self.stacked_convs): |
|
chn = self.in_channels if i == 0 else self.feat_channels |
|
self.cls_convs.append( |
|
ConvModule( |
|
chn, |
|
self.feat_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg)) |
|
self.reg_convs.append( |
|
ConvModule( |
|
chn, |
|
self.feat_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg)) |
|
assert self.num_anchors == 1, 'anchor free version' |
|
self.gfl_cls = nn.Conv2d( |
|
self.feat_channels, self.cls_out_channels, 3, padding=1) |
|
self.gfl_reg = nn.Conv2d( |
|
self.feat_channels, 4 * (self.reg_max + 1), 3, padding=1) |
|
self.scales = nn.ModuleList( |
|
[Scale(1.0) for _ in self.prior_generator.strides]) |
|
|
|
def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]: |
|
"""Forward features from the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Features from the upstream network, each is |
|
a 4D-tensor. |
|
|
|
Returns: |
|
tuple: Usually a tuple of classification scores and bbox prediction |
|
|
|
- cls_scores (list[Tensor]): Classification and quality (IoU) |
|
joint scores for all scale levels, each is a 4D-tensor, |
|
the channel number is num_classes. |
|
- bbox_preds (list[Tensor]): Box distribution logits for all |
|
scale levels, each is a 4D-tensor, the channel number is |
|
4*(n+1), n is max value of integral set. |
|
""" |
|
return multi_apply(self.forward_single, x, self.scales) |
|
|
|
def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]: |
|
"""Forward feature of a single scale level. |
|
|
|
Args: |
|
x (Tensor): Features of a single scale level. |
|
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize |
|
the bbox prediction. |
|
|
|
Returns: |
|
tuple: |
|
|
|
- cls_score (Tensor): Cls and quality joint scores for a single |
|
scale level the channel number is num_classes. |
|
- bbox_pred (Tensor): Box distribution logits for a single scale |
|
level, the channel number is 4*(n+1), n is max value of |
|
integral set. |
|
""" |
|
cls_feat = x |
|
reg_feat = x |
|
for cls_conv in self.cls_convs: |
|
cls_feat = cls_conv(cls_feat) |
|
for reg_conv in self.reg_convs: |
|
reg_feat = reg_conv(reg_feat) |
|
cls_score = self.gfl_cls(cls_feat) |
|
bbox_pred = scale(self.gfl_reg(reg_feat)).float() |
|
return cls_score, bbox_pred |
|
|
|
def anchor_center(self, anchors: Tensor) -> Tensor: |
|
"""Get anchor centers from anchors. |
|
|
|
Args: |
|
anchors (Tensor): Anchor list with shape (N, 4), ``xyxy`` format. |
|
|
|
Returns: |
|
Tensor: Anchor centers with shape (N, 2), ``xy`` format. |
|
""" |
|
anchors_cx = (anchors[..., 2] + anchors[..., 0]) / 2 |
|
anchors_cy = (anchors[..., 3] + anchors[..., 1]) / 2 |
|
return torch.stack([anchors_cx, anchors_cy], dim=-1) |
|
|
|
def loss_by_feat_single(self, anchors: Tensor, cls_score: Tensor, |
|
bbox_pred: Tensor, labels: Tensor, |
|
label_weights: Tensor, bbox_targets: Tensor, |
|
stride: Tuple[int], avg_factor: int) -> dict: |
|
"""Calculate the loss of a single scale level based on the features |
|
extracted by the detection head. |
|
|
|
Args: |
|
anchors (Tensor): Box reference for each scale level with shape |
|
(N, num_total_anchors, 4). |
|
cls_score (Tensor): Cls and quality joint scores for each scale |
|
level has shape (N, num_classes, H, W). |
|
bbox_pred (Tensor): Box distribution logits for each scale |
|
level with shape (N, 4*(n+1), H, W), n is max value of integral |
|
set. |
|
labels (Tensor): Labels of each anchors with shape |
|
(N, num_total_anchors). |
|
label_weights (Tensor): Label weights of each anchor with shape |
|
(N, num_total_anchors) |
|
bbox_targets (Tensor): BBox regression targets of each anchor |
|
weight shape (N, num_total_anchors, 4). |
|
stride (Tuple[int]): Stride in this scale level. |
|
avg_factor (int): Average factor that is used to average |
|
the loss. When using sampling method, avg_factor is usually |
|
the sum of positive and negative priors. When using |
|
`PseudoSampler`, `avg_factor` is usually equal to the number |
|
of positive priors. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
assert stride[0] == stride[1], 'h stride is not equal to w stride!' |
|
anchors = anchors.reshape(-1, 4) |
|
cls_score = cls_score.permute(0, 2, 3, |
|
1).reshape(-1, self.cls_out_channels) |
|
bbox_pred = bbox_pred.permute(0, 2, 3, |
|
1).reshape(-1, 4 * (self.reg_max + 1)) |
|
bbox_targets = bbox_targets.reshape(-1, 4) |
|
labels = labels.reshape(-1) |
|
label_weights = label_weights.reshape(-1) |
|
|
|
|
|
bg_class_ind = self.num_classes |
|
pos_inds = ((labels >= 0) |
|
& (labels < bg_class_ind)).nonzero().squeeze(1) |
|
score = label_weights.new_zeros(labels.shape) |
|
|
|
if len(pos_inds) > 0: |
|
pos_bbox_targets = bbox_targets[pos_inds] |
|
pos_bbox_pred = bbox_pred[pos_inds] |
|
pos_anchors = anchors[pos_inds] |
|
pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0] |
|
|
|
weight_targets = cls_score.detach().sigmoid() |
|
weight_targets = weight_targets.max(dim=1)[0][pos_inds] |
|
pos_bbox_pred_corners = self.integral(pos_bbox_pred) |
|
pos_decode_bbox_pred = self.bbox_coder.decode( |
|
pos_anchor_centers, pos_bbox_pred_corners) |
|
pos_decode_bbox_targets = pos_bbox_targets / stride[0] |
|
score[pos_inds] = bbox_overlaps( |
|
pos_decode_bbox_pred.detach(), |
|
pos_decode_bbox_targets, |
|
is_aligned=True) |
|
pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1) |
|
target_corners = self.bbox_coder.encode(pos_anchor_centers, |
|
pos_decode_bbox_targets, |
|
self.reg_max).reshape(-1) |
|
|
|
|
|
loss_bbox = self.loss_bbox( |
|
pos_decode_bbox_pred, |
|
pos_decode_bbox_targets, |
|
weight=weight_targets, |
|
avg_factor=1.0) |
|
|
|
|
|
loss_dfl = self.loss_dfl( |
|
pred_corners, |
|
target_corners, |
|
weight=weight_targets[:, None].expand(-1, 4).reshape(-1), |
|
avg_factor=4.0) |
|
else: |
|
loss_bbox = bbox_pred.sum() * 0 |
|
loss_dfl = bbox_pred.sum() * 0 |
|
weight_targets = bbox_pred.new_tensor(0) |
|
|
|
|
|
loss_cls = self.loss_cls( |
|
cls_score, (labels, score), |
|
weight=label_weights, |
|
avg_factor=avg_factor) |
|
|
|
return loss_cls, loss_bbox, loss_dfl, weight_targets.sum() |
|
|
|
def loss_by_feat( |
|
self, |
|
cls_scores: List[Tensor], |
|
bbox_preds: List[Tensor], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None) -> dict: |
|
"""Calculate the loss based on the features extracted by the detection |
|
head. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Cls and quality scores for each scale |
|
level has shape (N, num_classes, H, W). |
|
bbox_preds (list[Tensor]): Box distribution logits for each scale |
|
level with shape (N, 4*(n+1), H, W), n is max value of integral |
|
set. |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
|
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
assert len(featmap_sizes) == self.prior_generator.num_levels |
|
|
|
device = cls_scores[0].device |
|
anchor_list, valid_flag_list = self.get_anchors( |
|
featmap_sizes, batch_img_metas, device=device) |
|
|
|
cls_reg_targets = self.get_targets( |
|
anchor_list, |
|
valid_flag_list, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore=batch_gt_instances_ignore) |
|
|
|
(anchor_list, labels_list, label_weights_list, bbox_targets_list, |
|
bbox_weights_list, avg_factor) = cls_reg_targets |
|
|
|
avg_factor = reduce_mean( |
|
torch.tensor(avg_factor, dtype=torch.float, device=device)).item() |
|
|
|
losses_cls, losses_bbox, losses_dfl,\ |
|
avg_factor = multi_apply( |
|
self.loss_by_feat_single, |
|
anchor_list, |
|
cls_scores, |
|
bbox_preds, |
|
labels_list, |
|
label_weights_list, |
|
bbox_targets_list, |
|
self.prior_generator.strides, |
|
avg_factor=avg_factor) |
|
|
|
avg_factor = sum(avg_factor) |
|
avg_factor = reduce_mean(avg_factor).clamp_(min=1).item() |
|
losses_bbox = list(map(lambda x: x / avg_factor, losses_bbox)) |
|
losses_dfl = list(map(lambda x: x / avg_factor, losses_dfl)) |
|
return dict( |
|
loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dfl=losses_dfl) |
|
|
|
def _predict_by_feat_single(self, |
|
cls_score_list: List[Tensor], |
|
bbox_pred_list: List[Tensor], |
|
score_factor_list: List[Tensor], |
|
mlvl_priors: List[Tensor], |
|
img_meta: dict, |
|
cfg: ConfigDict, |
|
rescale: bool = False, |
|
with_nms: bool = True) -> InstanceData: |
|
"""Transform a single image's features extracted from the head into |
|
bbox results. |
|
|
|
Args: |
|
cls_score_list (list[Tensor]): Box scores from all scale |
|
levels of a single image, each item has shape |
|
(num_priors * num_classes, H, W). |
|
bbox_pred_list (list[Tensor]): Box energies / deltas from |
|
all scale levels of a single image, each item has shape |
|
(num_priors * 4, H, W). |
|
score_factor_list (list[Tensor]): Score factor from all scale |
|
levels of a single image. GFL head does not need this value. |
|
mlvl_priors (list[Tensor]): Each element in the list is |
|
the priors of a single level in feature pyramid, has shape |
|
(num_priors, 4). |
|
img_meta (dict): Image meta info. |
|
cfg (:obj: `ConfigDict`): Test / postprocessing configuration, |
|
if None, test_cfg would be used. |
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
with_nms (bool): If True, do nms before return boxes. |
|
Defaults to True. |
|
|
|
Returns: |
|
tuple[Tensor]: Results of detected bboxes and labels. If with_nms |
|
is False and mlvl_score_factor is None, return mlvl_bboxes and |
|
mlvl_scores, else return mlvl_bboxes, mlvl_scores and |
|
mlvl_score_factor. Usually with_nms is False is used for aug |
|
test. If with_nms is True, then return the following format |
|
|
|
- det_bboxes (Tensor): Predicted bboxes with shape |
|
[num_bboxes, 5], where the first 4 columns are bounding |
|
box positions (tl_x, tl_y, br_x, br_y) and the 5-th |
|
column are scores between 0 and 1. |
|
- det_labels (Tensor): Predicted labels of the corresponding |
|
box with shape [num_bboxes]. |
|
""" |
|
cfg = self.test_cfg if cfg is None else cfg |
|
img_shape = img_meta['img_shape'] |
|
nms_pre = cfg.get('nms_pre', -1) |
|
|
|
mlvl_bboxes = [] |
|
mlvl_scores = [] |
|
mlvl_labels = [] |
|
for level_idx, (cls_score, bbox_pred, stride, priors) in enumerate( |
|
zip(cls_score_list, bbox_pred_list, |
|
self.prior_generator.strides, mlvl_priors)): |
|
assert cls_score.size()[-2:] == bbox_pred.size()[-2:] |
|
assert stride[0] == stride[1] |
|
|
|
bbox_pred = bbox_pred.permute(1, 2, 0) |
|
bbox_pred = self.integral(bbox_pred) * stride[0] |
|
|
|
scores = cls_score.permute(1, 2, 0).reshape( |
|
-1, self.cls_out_channels).sigmoid() |
|
|
|
|
|
|
|
|
|
|
|
|
|
results = filter_scores_and_topk( |
|
scores, cfg.score_thr, nms_pre, |
|
dict(bbox_pred=bbox_pred, priors=priors)) |
|
scores, labels, _, filtered_results = results |
|
|
|
bbox_pred = filtered_results['bbox_pred'] |
|
priors = filtered_results['priors'] |
|
|
|
bboxes = self.bbox_coder.decode( |
|
self.anchor_center(priors), bbox_pred, max_shape=img_shape) |
|
mlvl_bboxes.append(bboxes) |
|
mlvl_scores.append(scores) |
|
mlvl_labels.append(labels) |
|
|
|
results = InstanceData() |
|
results.bboxes = torch.cat(mlvl_bboxes) |
|
results.scores = torch.cat(mlvl_scores) |
|
results.labels = torch.cat(mlvl_labels) |
|
|
|
return self._bbox_post_process( |
|
results=results, |
|
cfg=cfg, |
|
rescale=rescale, |
|
with_nms=with_nms, |
|
img_meta=img_meta) |
|
|
|
def get_targets(self, |
|
anchor_list: List[Tensor], |
|
valid_flag_list: List[Tensor], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None, |
|
unmap_outputs=True) -> tuple: |
|
"""Get targets for GFL head. |
|
|
|
This method is almost the same as `AnchorHead.get_targets()`. Besides |
|
returning the targets as the parent method does, it also returns the |
|
anchors as the first element of the returned tuple. |
|
""" |
|
num_imgs = len(batch_img_metas) |
|
assert len(anchor_list) == len(valid_flag_list) == num_imgs |
|
|
|
|
|
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] |
|
num_level_anchors_list = [num_level_anchors] * num_imgs |
|
|
|
|
|
for i in range(num_imgs): |
|
assert len(anchor_list[i]) == len(valid_flag_list[i]) |
|
anchor_list[i] = torch.cat(anchor_list[i]) |
|
valid_flag_list[i] = torch.cat(valid_flag_list[i]) |
|
|
|
|
|
if batch_gt_instances_ignore is None: |
|
batch_gt_instances_ignore = [None] * num_imgs |
|
(all_anchors, all_labels, all_label_weights, all_bbox_targets, |
|
all_bbox_weights, pos_inds_list, neg_inds_list, |
|
sampling_results_list) = multi_apply( |
|
self._get_targets_single, |
|
anchor_list, |
|
valid_flag_list, |
|
num_level_anchors_list, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore, |
|
unmap_outputs=unmap_outputs) |
|
|
|
|
|
|
|
|
|
avg_factor = sum( |
|
[results.avg_factor for results in sampling_results_list]) |
|
|
|
anchors_list = images_to_levels(all_anchors, num_level_anchors) |
|
labels_list = images_to_levels(all_labels, num_level_anchors) |
|
label_weights_list = images_to_levels(all_label_weights, |
|
num_level_anchors) |
|
bbox_targets_list = images_to_levels(all_bbox_targets, |
|
num_level_anchors) |
|
bbox_weights_list = images_to_levels(all_bbox_weights, |
|
num_level_anchors) |
|
return (anchors_list, labels_list, label_weights_list, |
|
bbox_targets_list, bbox_weights_list, avg_factor) |
|
|
|
def _get_targets_single(self, |
|
flat_anchors: Tensor, |
|
valid_flags: Tensor, |
|
num_level_anchors: List[int], |
|
gt_instances: InstanceData, |
|
img_meta: dict, |
|
gt_instances_ignore: Optional[InstanceData] = None, |
|
unmap_outputs: bool = True) -> tuple: |
|
"""Compute regression, classification targets for anchors in a single |
|
image. |
|
|
|
Args: |
|
flat_anchors (Tensor): Multi-level anchors of the image, which are |
|
concatenated into a single tensor of shape (num_anchors, 4) |
|
valid_flags (Tensor): Multi level valid flags of the image, |
|
which are concatenated into a single tensor of |
|
shape (num_anchors,). |
|
num_level_anchors (list[int]): Number of anchors of each scale |
|
level. |
|
gt_instances (:obj:`InstanceData`): Ground truth of instance |
|
annotations. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
img_meta (dict): Meta information for current image. |
|
gt_instances_ignore (:obj:`InstanceData`, optional): Instances |
|
to be ignored during training. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
unmap_outputs (bool): Whether to map outputs back to the original |
|
set of anchors. Defaults to True. |
|
|
|
Returns: |
|
tuple: N is the number of total anchors in the image. |
|
|
|
- anchors (Tensor): All anchors in the image with shape (N, 4). |
|
- labels (Tensor): Labels of all anchors in the image with |
|
shape (N,). |
|
- label_weights (Tensor): Label weights of all anchor in the |
|
image with shape (N,). |
|
- bbox_targets (Tensor): BBox targets of all anchors in the |
|
image with shape (N, 4). |
|
- bbox_weights (Tensor): BBox weights of all anchors in the |
|
image with shape (N, 4). |
|
- pos_inds (Tensor): Indices of positive anchor with shape |
|
(num_pos,). |
|
- neg_inds (Tensor): Indices of negative anchor with shape |
|
(num_neg,). |
|
- sampling_result (:obj:`SamplingResult`): Sampling results. |
|
""" |
|
inside_flags = anchor_inside_flags(flat_anchors, valid_flags, |
|
img_meta['img_shape'][:2], |
|
self.train_cfg['allowed_border']) |
|
if not inside_flags.any(): |
|
raise ValueError( |
|
'There is no valid anchor inside the image boundary. Please ' |
|
'check the image size and anchor sizes, or set ' |
|
'``allowed_border`` to -1 to skip the condition.') |
|
|
|
anchors = flat_anchors[inside_flags, :] |
|
num_level_anchors_inside = self.get_num_level_anchors_inside( |
|
num_level_anchors, inside_flags) |
|
pred_instances = InstanceData(priors=anchors) |
|
assign_result = self.assigner.assign( |
|
pred_instances=pred_instances, |
|
num_level_priors=num_level_anchors_inside, |
|
gt_instances=gt_instances, |
|
gt_instances_ignore=gt_instances_ignore) |
|
|
|
sampling_result = self.sampler.sample( |
|
assign_result=assign_result, |
|
pred_instances=pred_instances, |
|
gt_instances=gt_instances) |
|
|
|
num_valid_anchors = anchors.shape[0] |
|
bbox_targets = torch.zeros_like(anchors) |
|
bbox_weights = torch.zeros_like(anchors) |
|
labels = anchors.new_full((num_valid_anchors, ), |
|
self.num_classes, |
|
dtype=torch.long) |
|
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) |
|
|
|
pos_inds = sampling_result.pos_inds |
|
neg_inds = sampling_result.neg_inds |
|
if len(pos_inds) > 0: |
|
pos_bbox_targets = sampling_result.pos_gt_bboxes |
|
bbox_targets[pos_inds, :] = pos_bbox_targets |
|
bbox_weights[pos_inds, :] = 1.0 |
|
|
|
labels[pos_inds] = sampling_result.pos_gt_labels |
|
if self.train_cfg['pos_weight'] <= 0: |
|
label_weights[pos_inds] = 1.0 |
|
else: |
|
label_weights[pos_inds] = self.train_cfg['pos_weight'] |
|
if len(neg_inds) > 0: |
|
label_weights[neg_inds] = 1.0 |
|
|
|
|
|
if unmap_outputs: |
|
num_total_anchors = flat_anchors.size(0) |
|
anchors = unmap(anchors, num_total_anchors, inside_flags) |
|
labels = unmap( |
|
labels, num_total_anchors, inside_flags, fill=self.num_classes) |
|
label_weights = unmap(label_weights, num_total_anchors, |
|
inside_flags) |
|
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) |
|
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) |
|
|
|
return (anchors, labels, label_weights, bbox_targets, bbox_weights, |
|
pos_inds, neg_inds, sampling_result) |
|
|
|
def get_num_level_anchors_inside(self, num_level_anchors: List[int], |
|
inside_flags: Tensor) -> List[int]: |
|
"""Get the number of valid anchors in every level.""" |
|
|
|
split_inside_flags = torch.split(inside_flags, num_level_anchors) |
|
num_level_anchors_inside = [ |
|
int(flags.sum()) for flags in split_inside_flags |
|
] |
|
return num_level_anchors_inside |
|
|