|
|
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
from mmengine.runner import load_checkpoint |
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS |
|
from mmdet.structures import SampleList |
|
from mmdet.utils import ConfigType, OptConfigType |
|
from ..utils.misc import unpack_gt_instances |
|
from .kd_one_stage import KnowledgeDistillationSingleStageDetector |
|
|
|
|
|
@MODELS.register_module() |
|
class LAD(KnowledgeDistillationSingleStageDetector): |
|
"""Implementation of `LAD <https://arxiv.org/pdf/2108.10520.pdf>`_.""" |
|
|
|
def __init__(self, |
|
backbone: ConfigType, |
|
neck: ConfigType, |
|
bbox_head: ConfigType, |
|
teacher_backbone: ConfigType, |
|
teacher_neck: ConfigType, |
|
teacher_bbox_head: ConfigType, |
|
teacher_ckpt: Optional[str] = None, |
|
eval_teacher: bool = True, |
|
train_cfg: OptConfigType = None, |
|
test_cfg: OptConfigType = None, |
|
data_preprocessor: OptConfigType = None) -> None: |
|
super(KnowledgeDistillationSingleStageDetector, self).__init__( |
|
backbone=backbone, |
|
neck=neck, |
|
bbox_head=bbox_head, |
|
train_cfg=train_cfg, |
|
test_cfg=test_cfg, |
|
data_preprocessor=data_preprocessor) |
|
self.eval_teacher = eval_teacher |
|
self.teacher_model = nn.Module() |
|
self.teacher_model.backbone = MODELS.build(teacher_backbone) |
|
if teacher_neck is not None: |
|
self.teacher_model.neck = MODELS.build(teacher_neck) |
|
teacher_bbox_head.update(train_cfg=train_cfg) |
|
teacher_bbox_head.update(test_cfg=test_cfg) |
|
self.teacher_model.bbox_head = MODELS.build(teacher_bbox_head) |
|
if teacher_ckpt is not None: |
|
load_checkpoint( |
|
self.teacher_model, teacher_ckpt, map_location='cpu') |
|
|
|
@property |
|
def with_teacher_neck(self) -> bool: |
|
"""bool: whether the detector has a teacher_neck""" |
|
return hasattr(self.teacher_model, 'neck') and \ |
|
self.teacher_model.neck is not None |
|
|
|
def extract_teacher_feat(self, batch_inputs: Tensor) -> Tensor: |
|
"""Directly extract teacher features from the backbone+neck.""" |
|
x = self.teacher_model.backbone(batch_inputs) |
|
if self.with_teacher_neck: |
|
x = self.teacher_model.neck(x) |
|
return x |
|
|
|
def loss(self, batch_inputs: Tensor, |
|
batch_data_samples: SampleList) -> dict: |
|
""" |
|
Args: |
|
batch_inputs (Tensor): Input images of shape (N, C, H, W). |
|
These should usually be mean centered and std scaled. |
|
batch_data_samples (list[:obj:`DetDataSample`]): The batch |
|
data samples. It usually includes information such |
|
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
outputs = unpack_gt_instances(batch_data_samples) |
|
batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \ |
|
= outputs |
|
|
|
with torch.no_grad(): |
|
x_teacher = self.extract_teacher_feat(batch_inputs) |
|
outs_teacher = self.teacher_model.bbox_head(x_teacher) |
|
label_assignment_results = \ |
|
self.teacher_model.bbox_head.get_label_assignment( |
|
*outs_teacher, batch_gt_instances, batch_img_metas, |
|
batch_gt_instances_ignore) |
|
|
|
|
|
x = self.extract_feat(batch_inputs) |
|
losses = self.bbox_head.loss(x, label_assignment_results, |
|
batch_data_samples) |
|
return losses |
|
|