|
|
|
import torch |
|
|
|
|
|
def mask_matrix_nms(masks, |
|
labels, |
|
scores, |
|
filter_thr=-1, |
|
nms_pre=-1, |
|
max_num=-1, |
|
kernel='gaussian', |
|
sigma=2.0, |
|
mask_area=None): |
|
"""Matrix NMS for multi-class masks. |
|
|
|
Args: |
|
masks (Tensor): Has shape (num_instances, h, w) |
|
labels (Tensor): Labels of corresponding masks, |
|
has shape (num_instances,). |
|
scores (Tensor): Mask scores of corresponding masks, |
|
has shape (num_instances). |
|
filter_thr (float): Score threshold to filter the masks |
|
after matrix nms. Default: -1, which means do not |
|
use filter_thr. |
|
nms_pre (int): The max number of instances to do the matrix nms. |
|
Default: -1, which means do not use nms_pre. |
|
max_num (int, optional): If there are more than max_num masks after |
|
matrix, only top max_num will be kept. Default: -1, which means |
|
do not use max_num. |
|
kernel (str): 'linear' or 'gaussian'. |
|
sigma (float): std in gaussian method. |
|
mask_area (Tensor): The sum of seg_masks. |
|
|
|
Returns: |
|
tuple(Tensor): Processed mask results. |
|
|
|
- scores (Tensor): Updated scores, has shape (n,). |
|
- labels (Tensor): Remained labels, has shape (n,). |
|
- masks (Tensor): Remained masks, has shape (n, w, h). |
|
- keep_inds (Tensor): The indices number of |
|
the remaining mask in the input mask, has shape (n,). |
|
""" |
|
assert len(labels) == len(masks) == len(scores) |
|
if len(labels) == 0: |
|
return scores.new_zeros(0), labels.new_zeros(0), masks.new_zeros( |
|
0, *masks.shape[-2:]), labels.new_zeros(0) |
|
if mask_area is None: |
|
mask_area = masks.sum((1, 2)).float() |
|
else: |
|
assert len(masks) == len(mask_area) |
|
|
|
|
|
scores, sort_inds = torch.sort(scores, descending=True) |
|
|
|
keep_inds = sort_inds |
|
if nms_pre > 0 and len(sort_inds) > nms_pre: |
|
sort_inds = sort_inds[:nms_pre] |
|
keep_inds = keep_inds[:nms_pre] |
|
scores = scores[:nms_pre] |
|
masks = masks[sort_inds] |
|
mask_area = mask_area[sort_inds] |
|
labels = labels[sort_inds] |
|
|
|
num_masks = len(labels) |
|
flatten_masks = masks.reshape(num_masks, -1).float() |
|
|
|
inter_matrix = torch.mm(flatten_masks, flatten_masks.transpose(1, 0)) |
|
expanded_mask_area = mask_area.expand(num_masks, num_masks) |
|
|
|
iou_matrix = (inter_matrix / |
|
(expanded_mask_area + expanded_mask_area.transpose(1, 0) - |
|
inter_matrix)).triu(diagonal=1) |
|
|
|
expanded_labels = labels.expand(num_masks, num_masks) |
|
|
|
label_matrix = (expanded_labels == expanded_labels.transpose( |
|
1, 0)).triu(diagonal=1) |
|
|
|
|
|
compensate_iou, _ = (iou_matrix * label_matrix).max(0) |
|
compensate_iou = compensate_iou.expand(num_masks, |
|
num_masks).transpose(1, 0) |
|
|
|
|
|
decay_iou = iou_matrix * label_matrix |
|
|
|
|
|
if kernel == 'gaussian': |
|
decay_matrix = torch.exp(-1 * sigma * (decay_iou**2)) |
|
compensate_matrix = torch.exp(-1 * sigma * (compensate_iou**2)) |
|
decay_coefficient, _ = (decay_matrix / compensate_matrix).min(0) |
|
elif kernel == 'linear': |
|
decay_matrix = (1 - decay_iou) / (1 - compensate_iou) |
|
decay_coefficient, _ = decay_matrix.min(0) |
|
else: |
|
raise NotImplementedError( |
|
f'{kernel} kernel is not supported in matrix nms!') |
|
|
|
scores = scores * decay_coefficient |
|
|
|
if filter_thr > 0: |
|
keep = scores >= filter_thr |
|
keep_inds = keep_inds[keep] |
|
if not keep.any(): |
|
return scores.new_zeros(0), labels.new_zeros(0), masks.new_zeros( |
|
0, *masks.shape[-2:]), labels.new_zeros(0) |
|
masks = masks[keep] |
|
scores = scores[keep] |
|
labels = labels[keep] |
|
|
|
|
|
scores, sort_inds = torch.sort(scores, descending=True) |
|
keep_inds = keep_inds[sort_inds] |
|
if max_num > 0 and len(sort_inds) > max_num: |
|
sort_inds = sort_inds[:max_num] |
|
keep_inds = keep_inds[:max_num] |
|
scores = scores[:max_num] |
|
masks = masks[sort_inds] |
|
labels = labels[sort_inds] |
|
|
|
return scores, labels, masks, keep_inds |
|
|