|
|
|
from typing import List, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmcv.cnn import Conv2d, ConvModule |
|
from mmengine.model import BaseModule, ModuleList, caffe2_xavier_init |
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS |
|
from mmdet.utils import ConfigType, OptMultiConfig |
|
from .positional_encoding import SinePositionalEncoding |
|
from .transformer import DetrTransformerEncoder |
|
|
|
|
|
@MODELS.register_module() |
|
class PixelDecoder(BaseModule): |
|
"""Pixel decoder with a structure like fpn. |
|
|
|
Args: |
|
in_channels (list[int] | tuple[int]): Number of channels in the |
|
input feature maps. |
|
feat_channels (int): Number channels for feature. |
|
out_channels (int): Number channels for output. |
|
norm_cfg (:obj:`ConfigDict` or dict): Config for normalization. |
|
Defaults to dict(type='GN', num_groups=32). |
|
act_cfg (:obj:`ConfigDict` or dict): Config for activation. |
|
Defaults to dict(type='ReLU'). |
|
encoder (:obj:`ConfigDict` or dict): Config for transorformer |
|
encoder.Defaults to None. |
|
positional_encoding (:obj:`ConfigDict` or dict): Config for |
|
transformer encoder position encoding. Defaults to |
|
dict(type='SinePositionalEncoding', num_feats=128, |
|
normalize=True). |
|
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \ |
|
dict], optional): Initialization config dict. Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels: Union[List[int], Tuple[int]], |
|
feat_channels: int, |
|
out_channels: int, |
|
norm_cfg: ConfigType = dict(type='GN', num_groups=32), |
|
act_cfg: ConfigType = dict(type='ReLU'), |
|
init_cfg: OptMultiConfig = None) -> None: |
|
super().__init__(init_cfg=init_cfg) |
|
self.in_channels = in_channels |
|
self.num_inputs = len(in_channels) |
|
self.lateral_convs = ModuleList() |
|
self.output_convs = ModuleList() |
|
self.use_bias = norm_cfg is None |
|
for i in range(0, self.num_inputs - 1): |
|
lateral_conv = ConvModule( |
|
in_channels[i], |
|
feat_channels, |
|
kernel_size=1, |
|
bias=self.use_bias, |
|
norm_cfg=norm_cfg, |
|
act_cfg=None) |
|
output_conv = ConvModule( |
|
feat_channels, |
|
feat_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=self.use_bias, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg) |
|
self.lateral_convs.append(lateral_conv) |
|
self.output_convs.append(output_conv) |
|
|
|
self.last_feat_conv = ConvModule( |
|
in_channels[-1], |
|
feat_channels, |
|
kernel_size=3, |
|
padding=1, |
|
stride=1, |
|
bias=self.use_bias, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg) |
|
self.mask_feature = Conv2d( |
|
feat_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
def init_weights(self) -> None: |
|
"""Initialize weights.""" |
|
for i in range(0, self.num_inputs - 2): |
|
caffe2_xavier_init(self.lateral_convs[i].conv, bias=0) |
|
caffe2_xavier_init(self.output_convs[i].conv, bias=0) |
|
|
|
caffe2_xavier_init(self.mask_feature, bias=0) |
|
caffe2_xavier_init(self.last_feat_conv, bias=0) |
|
|
|
def forward(self, feats: List[Tensor], |
|
batch_img_metas: List[dict]) -> Tuple[Tensor, Tensor]: |
|
""" |
|
Args: |
|
feats (list[Tensor]): Feature maps of each level. Each has |
|
shape of (batch_size, c, h, w). |
|
batch_img_metas (list[dict]): List of image information. |
|
Pass in for creating more accurate padding mask. Not |
|
used here. |
|
|
|
Returns: |
|
tuple[Tensor, Tensor]: a tuple containing the following: |
|
|
|
- mask_feature (Tensor): Shape (batch_size, c, h, w). |
|
- memory (Tensor): Output of last stage of backbone.\ |
|
Shape (batch_size, c, h, w). |
|
""" |
|
y = self.last_feat_conv(feats[-1]) |
|
for i in range(self.num_inputs - 2, -1, -1): |
|
x = feats[i] |
|
cur_feat = self.lateral_convs[i](x) |
|
y = cur_feat + \ |
|
F.interpolate(y, size=cur_feat.shape[-2:], mode='nearest') |
|
y = self.output_convs[i](y) |
|
|
|
mask_feature = self.mask_feature(y) |
|
memory = feats[-1] |
|
return mask_feature, memory |
|
|
|
|
|
@MODELS.register_module() |
|
class TransformerEncoderPixelDecoder(PixelDecoder): |
|
"""Pixel decoder with transormer encoder inside. |
|
|
|
Args: |
|
in_channels (list[int] | tuple[int]): Number of channels in the |
|
input feature maps. |
|
feat_channels (int): Number channels for feature. |
|
out_channels (int): Number channels for output. |
|
norm_cfg (:obj:`ConfigDict` or dict): Config for normalization. |
|
Defaults to dict(type='GN', num_groups=32). |
|
act_cfg (:obj:`ConfigDict` or dict): Config for activation. |
|
Defaults to dict(type='ReLU'). |
|
encoder (:obj:`ConfigDict` or dict): Config for transformer encoder. |
|
Defaults to None. |
|
positional_encoding (:obj:`ConfigDict` or dict): Config for |
|
transformer encoder position encoding. Defaults to |
|
dict(num_feats=128, normalize=True). |
|
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \ |
|
dict], optional): Initialization config dict. Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels: Union[List[int], Tuple[int]], |
|
feat_channels: int, |
|
out_channels: int, |
|
norm_cfg: ConfigType = dict(type='GN', num_groups=32), |
|
act_cfg: ConfigType = dict(type='ReLU'), |
|
encoder: ConfigType = None, |
|
positional_encoding: ConfigType = dict( |
|
num_feats=128, normalize=True), |
|
init_cfg: OptMultiConfig = None) -> None: |
|
super().__init__( |
|
in_channels=in_channels, |
|
feat_channels=feat_channels, |
|
out_channels=out_channels, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg, |
|
init_cfg=init_cfg) |
|
self.last_feat_conv = None |
|
|
|
self.encoder = DetrTransformerEncoder(**encoder) |
|
self.encoder_embed_dims = self.encoder.embed_dims |
|
assert self.encoder_embed_dims == feat_channels, 'embed_dims({}) of ' \ |
|
'tranformer encoder must equal to feat_channels({})'.format( |
|
feat_channels, self.encoder_embed_dims) |
|
self.positional_encoding = SinePositionalEncoding( |
|
**positional_encoding) |
|
self.encoder_in_proj = Conv2d( |
|
in_channels[-1], feat_channels, kernel_size=1) |
|
self.encoder_out_proj = ConvModule( |
|
feat_channels, |
|
feat_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=self.use_bias, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg) |
|
|
|
def init_weights(self) -> None: |
|
"""Initialize weights.""" |
|
for i in range(0, self.num_inputs - 2): |
|
caffe2_xavier_init(self.lateral_convs[i].conv, bias=0) |
|
caffe2_xavier_init(self.output_convs[i].conv, bias=0) |
|
|
|
caffe2_xavier_init(self.mask_feature, bias=0) |
|
caffe2_xavier_init(self.encoder_in_proj, bias=0) |
|
caffe2_xavier_init(self.encoder_out_proj.conv, bias=0) |
|
|
|
for p in self.encoder.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
|
|
def forward(self, feats: List[Tensor], |
|
batch_img_metas: List[dict]) -> Tuple[Tensor, Tensor]: |
|
""" |
|
Args: |
|
feats (list[Tensor]): Feature maps of each level. Each has |
|
shape of (batch_size, c, h, w). |
|
batch_img_metas (list[dict]): List of image information. Pass in |
|
for creating more accurate padding mask. |
|
|
|
Returns: |
|
tuple: a tuple containing the following: |
|
|
|
- mask_feature (Tensor): shape (batch_size, c, h, w). |
|
- memory (Tensor): shape (batch_size, c, h, w). |
|
""" |
|
feat_last = feats[-1] |
|
bs, c, h, w = feat_last.shape |
|
input_img_h, input_img_w = batch_img_metas[0]['batch_input_shape'] |
|
padding_mask = feat_last.new_ones((bs, input_img_h, input_img_w), |
|
dtype=torch.float32) |
|
for i in range(bs): |
|
img_h, img_w = batch_img_metas[i]['img_shape'] |
|
padding_mask[i, :img_h, :img_w] = 0 |
|
padding_mask = F.interpolate( |
|
padding_mask.unsqueeze(1), |
|
size=feat_last.shape[-2:], |
|
mode='nearest').to(torch.bool).squeeze(1) |
|
|
|
pos_embed = self.positional_encoding(padding_mask) |
|
feat_last = self.encoder_in_proj(feat_last) |
|
|
|
feat_last = feat_last.flatten(2).permute(0, 2, 1) |
|
pos_embed = pos_embed.flatten(2).permute(0, 2, 1) |
|
|
|
padding_mask = padding_mask.flatten(1) |
|
memory = self.encoder( |
|
query=feat_last, |
|
query_pos=pos_embed, |
|
key_padding_mask=padding_mask) |
|
|
|
memory = memory.permute(0, 2, 1).view(bs, self.encoder_embed_dims, h, |
|
w) |
|
y = self.encoder_out_proj(memory) |
|
for i in range(self.num_inputs - 2, -1, -1): |
|
x = feats[i] |
|
cur_feat = self.lateral_convs[i](x) |
|
y = cur_feat + \ |
|
F.interpolate(y, size=cur_feat.shape[-2:], mode='nearest') |
|
y = self.output_convs[i](y) |
|
|
|
mask_feature = self.mask_feature(y) |
|
return mask_feature, memory |
|
|