|
|
|
from typing import List, Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from mmcv.cnn import ConvModule |
|
from mmengine.model import BaseModule |
|
|
|
from mmdet.registry import MODELS |
|
from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig |
|
|
|
|
|
class SSHContextModule(BaseModule): |
|
"""This is an implementation of `SSH context module` described in `SSH: |
|
Single Stage Headless Face Detector. |
|
|
|
<https://arxiv.org/pdf/1708.03979.pdf>`_. |
|
|
|
Args: |
|
in_channels (int): Number of input channels used at each scale. |
|
out_channels (int): Number of output channels used at each scale. |
|
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for |
|
convolution layer. Defaults to None. |
|
norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization |
|
layer. Defaults to dict(type='BN'). |
|
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or |
|
list[dict], optional): Initialization config dict. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels: int, |
|
out_channels: int, |
|
conv_cfg: OptConfigType = None, |
|
norm_cfg: ConfigType = dict(type='BN'), |
|
init_cfg: OptMultiConfig = None): |
|
super().__init__(init_cfg=init_cfg) |
|
assert out_channels % 4 == 0 |
|
|
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
|
|
self.conv5x5_1 = ConvModule( |
|
self.in_channels, |
|
self.out_channels // 4, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
) |
|
|
|
self.conv5x5_2 = ConvModule( |
|
self.out_channels // 4, |
|
self.out_channels // 4, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=None) |
|
|
|
self.conv7x7_2 = ConvModule( |
|
self.out_channels // 4, |
|
self.out_channels // 4, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
) |
|
|
|
self.conv7x7_3 = ConvModule( |
|
self.out_channels // 4, |
|
self.out_channels // 4, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=None, |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> tuple: |
|
conv5x5_1 = self.conv5x5_1(x) |
|
conv5x5 = self.conv5x5_2(conv5x5_1) |
|
conv7x7_2 = self.conv7x7_2(conv5x5_1) |
|
conv7x7 = self.conv7x7_3(conv7x7_2) |
|
|
|
return (conv5x5, conv7x7) |
|
|
|
|
|
class SSHDetModule(BaseModule): |
|
"""This is an implementation of `SSH detection module` described in `SSH: |
|
Single Stage Headless Face Detector. |
|
|
|
<https://arxiv.org/pdf/1708.03979.pdf>`_. |
|
|
|
Args: |
|
in_channels (int): Number of input channels used at each scale. |
|
out_channels (int): Number of output channels used at each scale. |
|
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for |
|
convolution layer. Defaults to None. |
|
norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization |
|
layer. Defaults to dict(type='BN'). |
|
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or |
|
list[dict], optional): Initialization config dict. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels: int, |
|
out_channels: int, |
|
conv_cfg: OptConfigType = None, |
|
norm_cfg: ConfigType = dict(type='BN'), |
|
init_cfg: OptMultiConfig = None): |
|
super().__init__(init_cfg=init_cfg) |
|
assert out_channels % 4 == 0 |
|
|
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
|
|
self.conv3x3 = ConvModule( |
|
self.in_channels, |
|
self.out_channels // 2, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=None) |
|
|
|
self.context_module = SSHContextModule( |
|
in_channels=self.in_channels, |
|
out_channels=self.out_channels, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
conv3x3 = self.conv3x3(x) |
|
conv5x5, conv7x7 = self.context_module(x) |
|
out = torch.cat([conv3x3, conv5x5, conv7x7], dim=1) |
|
out = F.relu(out) |
|
|
|
return out |
|
|
|
|
|
@MODELS.register_module() |
|
class SSH(BaseModule): |
|
"""`SSH Neck` used in `SSH: Single Stage Headless Face Detector. |
|
|
|
<https://arxiv.org/pdf/1708.03979.pdf>`_. |
|
|
|
Args: |
|
num_scales (int): The number of scales / stages. |
|
in_channels (list[int]): The number of input channels per scale. |
|
out_channels (list[int]): The number of output channels per scale. |
|
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for |
|
convolution layer. Defaults to None. |
|
norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization |
|
layer. Defaults to dict(type='BN'). |
|
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or |
|
list[dict], optional): Initialization config dict. |
|
|
|
Example: |
|
>>> import torch |
|
>>> in_channels = [8, 16, 32, 64] |
|
>>> out_channels = [16, 32, 64, 128] |
|
>>> scales = [340, 170, 84, 43] |
|
>>> inputs = [torch.rand(1, c, s, s) |
|
... for c, s in zip(in_channels, scales)] |
|
>>> self = SSH(num_scales=4, in_channels=in_channels, |
|
... out_channels=out_channels) |
|
>>> outputs = self.forward(inputs) |
|
>>> for i in range(len(outputs)): |
|
... print(f'outputs[{i}].shape = {outputs[i].shape}') |
|
outputs[0].shape = torch.Size([1, 16, 340, 340]) |
|
outputs[1].shape = torch.Size([1, 32, 170, 170]) |
|
outputs[2].shape = torch.Size([1, 64, 84, 84]) |
|
outputs[3].shape = torch.Size([1, 128, 43, 43]) |
|
""" |
|
|
|
def __init__(self, |
|
num_scales: int, |
|
in_channels: List[int], |
|
out_channels: List[int], |
|
conv_cfg: OptConfigType = None, |
|
norm_cfg: ConfigType = dict(type='BN'), |
|
init_cfg: OptMultiConfig = dict( |
|
type='Xavier', layer='Conv2d', distribution='uniform')): |
|
super().__init__(init_cfg=init_cfg) |
|
assert (num_scales == len(in_channels) == len(out_channels)) |
|
self.num_scales = num_scales |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
|
|
for idx in range(self.num_scales): |
|
in_c, out_c = self.in_channels[idx], self.out_channels[idx] |
|
self.add_module( |
|
f'ssh_module{idx}', |
|
SSHDetModule( |
|
in_channels=in_c, |
|
out_channels=out_c, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg)) |
|
|
|
def forward(self, inputs: Tuple[torch.Tensor]) -> tuple: |
|
assert len(inputs) == self.num_scales |
|
|
|
outs = [] |
|
for idx, x in enumerate(inputs): |
|
ssh_module = getattr(self, f'ssh_module{idx}') |
|
out = ssh_module(x) |
|
outs.append(out) |
|
|
|
return tuple(outs) |
|
|