|
|
|
from typing import List, Optional, Tuple |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS |
|
from mmdet.structures import SampleList |
|
from mmdet.structures.bbox import bbox2roi |
|
from mmdet.utils import ConfigType, InstanceList |
|
from ..task_modules.samplers import SamplingResult |
|
from ..utils.misc import unpack_gt_instances |
|
from .standard_roi_head import StandardRoIHead |
|
|
|
|
|
@MODELS.register_module() |
|
class GridRoIHead(StandardRoIHead): |
|
"""Implementation of `Grid RoI Head <https://arxiv.org/abs/1811.12030>`_ |
|
|
|
Args: |
|
grid_roi_extractor (:obj:`ConfigDict` or dict): Config of |
|
roi extractor. |
|
grid_head (:obj:`ConfigDict` or dict): Config of grid head |
|
""" |
|
|
|
def __init__(self, grid_roi_extractor: ConfigType, grid_head: ConfigType, |
|
**kwargs) -> None: |
|
assert grid_head is not None |
|
super().__init__(**kwargs) |
|
if grid_roi_extractor is not None: |
|
self.grid_roi_extractor = MODELS.build(grid_roi_extractor) |
|
self.share_roi_extractor = False |
|
else: |
|
self.share_roi_extractor = True |
|
self.grid_roi_extractor = self.bbox_roi_extractor |
|
self.grid_head = MODELS.build(grid_head) |
|
|
|
def _random_jitter(self, |
|
sampling_results: List[SamplingResult], |
|
batch_img_metas: List[dict], |
|
amplitude: float = 0.15) -> List[SamplingResult]: |
|
"""Ramdom jitter positive proposals for training. |
|
|
|
Args: |
|
sampling_results (List[obj:SamplingResult]): Assign results of |
|
all images in a batch after sampling. |
|
batch_img_metas (list[dict]): List of image information. |
|
amplitude (float): Amplitude of random offset. Defaults to 0.15. |
|
|
|
Returns: |
|
list[obj:SamplingResult]: SamplingResults after random jittering. |
|
""" |
|
for sampling_result, img_meta in zip(sampling_results, |
|
batch_img_metas): |
|
bboxes = sampling_result.pos_priors |
|
random_offsets = bboxes.new_empty(bboxes.shape[0], 4).uniform_( |
|
-amplitude, amplitude) |
|
|
|
cxcy = (bboxes[:, 2:4] + bboxes[:, :2]) / 2 |
|
wh = (bboxes[:, 2:4] - bboxes[:, :2]).abs() |
|
|
|
new_cxcy = cxcy + wh * random_offsets[:, :2] |
|
new_wh = wh * (1 + random_offsets[:, 2:]) |
|
|
|
new_x1y1 = (new_cxcy - new_wh / 2) |
|
new_x2y2 = (new_cxcy + new_wh / 2) |
|
new_bboxes = torch.cat([new_x1y1, new_x2y2], dim=1) |
|
|
|
max_shape = img_meta['img_shape'] |
|
if max_shape is not None: |
|
new_bboxes[:, 0::2].clamp_(min=0, max=max_shape[1] - 1) |
|
new_bboxes[:, 1::2].clamp_(min=0, max=max_shape[0] - 1) |
|
|
|
sampling_result.pos_priors = new_bboxes |
|
return sampling_results |
|
|
|
|
|
def forward(self, |
|
x: Tuple[Tensor], |
|
rpn_results_list: InstanceList, |
|
batch_data_samples: SampleList = None) -> tuple: |
|
"""Network forward process. Usually includes backbone, neck and head |
|
forward without any post-processing. |
|
|
|
Args: |
|
x (Tuple[Tensor]): Multi-level features that may have different |
|
resolutions. |
|
rpn_results_list (list[:obj:`InstanceData`]): List of region |
|
proposals. |
|
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains |
|
the meta information of each image and corresponding |
|
annotations. |
|
|
|
Returns |
|
tuple: A tuple of features from ``bbox_head`` and ``mask_head`` |
|
forward. |
|
""" |
|
results = () |
|
proposals = [rpn_results.bboxes for rpn_results in rpn_results_list] |
|
rois = bbox2roi(proposals) |
|
|
|
if self.with_bbox: |
|
bbox_results = self._bbox_forward(x, rois) |
|
results = results + (bbox_results['cls_score'], ) |
|
if self.bbox_head.with_reg: |
|
results = results + (bbox_results['bbox_pred'], ) |
|
|
|
|
|
grid_rois = rois[:100] |
|
grid_feats = self.grid_roi_extractor( |
|
x[:len(self.grid_roi_extractor.featmap_strides)], grid_rois) |
|
if self.with_shared_head: |
|
grid_feats = self.shared_head(grid_feats) |
|
self.grid_head.test_mode = True |
|
grid_preds = self.grid_head(grid_feats) |
|
results = results + (grid_preds, ) |
|
|
|
|
|
if self.with_mask: |
|
mask_rois = rois[:100] |
|
mask_results = self._mask_forward(x, mask_rois) |
|
results = results + (mask_results['mask_preds'], ) |
|
return results |
|
|
|
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList, |
|
batch_data_samples: SampleList, **kwargs) -> dict: |
|
"""Perform forward propagation and loss calculation of the detection |
|
roi on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): List of multi-level img features. |
|
rpn_results_list (list[:obj:`InstanceData`]): List of region |
|
proposals. |
|
batch_data_samples (list[:obj:`DetDataSample`]): The batch |
|
data samples. It usually includes information such |
|
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components |
|
""" |
|
assert len(rpn_results_list) == len(batch_data_samples) |
|
outputs = unpack_gt_instances(batch_data_samples) |
|
(batch_gt_instances, batch_gt_instances_ignore, |
|
batch_img_metas) = outputs |
|
|
|
|
|
num_imgs = len(batch_data_samples) |
|
sampling_results = [] |
|
for i in range(num_imgs): |
|
|
|
rpn_results = rpn_results_list[i] |
|
rpn_results.priors = rpn_results.pop('bboxes') |
|
|
|
assign_result = self.bbox_assigner.assign( |
|
rpn_results, batch_gt_instances[i], |
|
batch_gt_instances_ignore[i]) |
|
sampling_result = self.bbox_sampler.sample( |
|
assign_result, |
|
rpn_results, |
|
batch_gt_instances[i], |
|
feats=[lvl_feat[i][None] for lvl_feat in x]) |
|
sampling_results.append(sampling_result) |
|
|
|
losses = dict() |
|
|
|
if self.with_bbox: |
|
bbox_results = self.bbox_loss(x, sampling_results, batch_img_metas) |
|
losses.update(bbox_results['loss_bbox']) |
|
|
|
|
|
if self.with_mask: |
|
mask_results = self.mask_loss(x, sampling_results, |
|
bbox_results['bbox_feats'], |
|
batch_gt_instances) |
|
losses.update(mask_results['loss_mask']) |
|
|
|
return losses |
|
|
|
def bbox_loss(self, |
|
x: Tuple[Tensor], |
|
sampling_results: List[SamplingResult], |
|
batch_img_metas: Optional[List[dict]] = None) -> dict: |
|
"""Perform forward propagation and loss calculation of the bbox head on |
|
the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): List of multi-level img features. |
|
sampling_results (list[:obj:`SamplingResult`]): Sampling results. |
|
batch_img_metas (list[dict], optional): Meta information of each |
|
image, e.g., image size, scaling factor, etc. |
|
|
|
Returns: |
|
dict[str, Tensor]: Usually returns a dictionary with keys: |
|
|
|
- `cls_score` (Tensor): Classification scores. |
|
- `bbox_pred` (Tensor): Box energies / deltas. |
|
- `bbox_feats` (Tensor): Extract bbox RoI features. |
|
- `loss_bbox` (dict): A dictionary of bbox loss components. |
|
""" |
|
assert batch_img_metas is not None |
|
bbox_results = super().bbox_loss(x, sampling_results) |
|
|
|
|
|
sampling_results = self._random_jitter(sampling_results, |
|
batch_img_metas) |
|
pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) |
|
|
|
|
|
if pos_rois.shape[0] == 0: |
|
return bbox_results |
|
|
|
grid_feats = self.grid_roi_extractor( |
|
x[:self.grid_roi_extractor.num_inputs], pos_rois) |
|
if self.with_shared_head: |
|
grid_feats = self.shared_head(grid_feats) |
|
|
|
max_sample_num_grid = self.train_cfg.get('max_num_grid', 192) |
|
sample_idx = torch.randperm( |
|
grid_feats.shape[0])[:min(grid_feats.shape[0], max_sample_num_grid |
|
)] |
|
grid_feats = grid_feats[sample_idx] |
|
grid_pred = self.grid_head(grid_feats) |
|
|
|
loss_grid = self.grid_head.loss(grid_pred, sample_idx, |
|
sampling_results, self.train_cfg) |
|
|
|
bbox_results['loss_bbox'].update(loss_grid) |
|
return bbox_results |
|
|
|
def predict_bbox(self, |
|
x: Tuple[Tensor], |
|
batch_img_metas: List[dict], |
|
rpn_results_list: InstanceList, |
|
rcnn_test_cfg: ConfigType, |
|
rescale: bool = False) -> InstanceList: |
|
"""Perform forward propagation of the bbox head and predict detection |
|
results on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Feature maps of all scale level. |
|
batch_img_metas (list[dict]): List of image information. |
|
rpn_results_list (list[:obj:`InstanceData`]): List of region |
|
proposals. |
|
rcnn_test_cfg (:obj:`ConfigDict`): `test_cfg` of R-CNN. |
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[:obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape \ |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape (num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), the last \ |
|
dimension 4 arrange as (x1, y1, x2, y2). |
|
""" |
|
results_list = super().predict_bbox( |
|
x, |
|
batch_img_metas=batch_img_metas, |
|
rpn_results_list=rpn_results_list, |
|
rcnn_test_cfg=rcnn_test_cfg, |
|
rescale=False) |
|
|
|
grid_rois = bbox2roi([res.bboxes for res in results_list]) |
|
if grid_rois.shape[0] != 0: |
|
grid_feats = self.grid_roi_extractor( |
|
x[:len(self.grid_roi_extractor.featmap_strides)], grid_rois) |
|
if self.with_shared_head: |
|
grid_feats = self.shared_head(grid_feats) |
|
self.grid_head.test_mode = True |
|
grid_preds = self.grid_head(grid_feats) |
|
results_list = self.grid_head.predict_by_feat( |
|
grid_preds=grid_preds, |
|
results_list=results_list, |
|
batch_img_metas=batch_img_metas, |
|
rescale=rescale) |
|
|
|
return results_list |
|
|