|
|
|
from typing import Optional |
|
|
|
import torch.nn as nn |
|
from mmengine.model import BaseModule |
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS |
|
from mmdet.utils import MultiConfig |
|
|
|
|
|
@MODELS.register_module() |
|
class FeatureRelayHead(BaseModule): |
|
"""Feature Relay Head used in `SCNet <https://arxiv.org/abs/2012.10150>`_. |
|
|
|
Args: |
|
in_channels (int): number of input channels. Defaults to 256. |
|
conv_out_channels (int): number of output channels before |
|
classification layer. Defaults to 256. |
|
roi_feat_size (int): roi feat size at box head. Default: 7. |
|
scale_factor (int): scale factor to match roi feat size |
|
at mask head. Defaults to 2. |
|
init_cfg (:obj:`ConfigDict` or dict or list[dict] or |
|
list[:obj:`ConfigDict`]): Initialization config dict. Defaults to |
|
dict(type='Kaiming', layer='Linear'). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int = 1024, |
|
out_conv_channels: int = 256, |
|
roi_feat_size: int = 7, |
|
scale_factor: int = 2, |
|
init_cfg: MultiConfig = dict(type='Kaiming', layer='Linear') |
|
) -> None: |
|
super().__init__(init_cfg=init_cfg) |
|
assert isinstance(roi_feat_size, int) |
|
|
|
self.in_channels = in_channels |
|
self.out_conv_channels = out_conv_channels |
|
self.roi_feat_size = roi_feat_size |
|
self.out_channels = (roi_feat_size**2) * out_conv_channels |
|
self.scale_factor = scale_factor |
|
self.fp16_enabled = False |
|
|
|
self.fc = nn.Linear(self.in_channels, self.out_channels) |
|
self.upsample = nn.Upsample( |
|
scale_factor=scale_factor, mode='bilinear', align_corners=True) |
|
|
|
def forward(self, x: Tensor) -> Optional[Tensor]: |
|
"""Forward function. |
|
|
|
Args: |
|
x (Tensor): Input feature. |
|
|
|
Returns: |
|
Optional[Tensor]: Output feature. When the first dim of input is |
|
0, None is returned. |
|
""" |
|
N, _ = x.shape |
|
if N > 0: |
|
out_C = self.out_conv_channels |
|
out_HW = self.roi_feat_size |
|
x = self.fc(x) |
|
x = x.reshape(N, out_C, out_HW, out_HW) |
|
x = self.upsample(x) |
|
return x |
|
return None |
|
|