|
|
|
from typing import List, Tuple |
|
|
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS |
|
from mmdet.structures import DetDataSample |
|
from mmdet.structures.bbox import bbox2roi |
|
from mmdet.utils import ConfigType, InstanceList |
|
from ..task_modules.samplers import SamplingResult |
|
from ..utils import empty_instances, unpack_gt_instances |
|
from .standard_roi_head import StandardRoIHead |
|
|
|
|
|
@MODELS.register_module() |
|
class MultiInstanceRoIHead(StandardRoIHead): |
|
"""The roi head for Multi-instance prediction.""" |
|
|
|
def __init__(self, num_instance: int = 2, *args, **kwargs) -> None: |
|
self.num_instance = num_instance |
|
super().__init__(*args, **kwargs) |
|
|
|
def init_bbox_head(self, bbox_roi_extractor: ConfigType, |
|
bbox_head: ConfigType) -> None: |
|
"""Initialize box head and box roi extractor. |
|
|
|
Args: |
|
bbox_roi_extractor (dict or ConfigDict): Config of box |
|
roi extractor. |
|
bbox_head (dict or ConfigDict): Config of box in box head. |
|
""" |
|
self.bbox_roi_extractor = MODELS.build(bbox_roi_extractor) |
|
self.bbox_head = MODELS.build(bbox_head) |
|
|
|
def _bbox_forward(self, x: Tuple[Tensor], rois: Tensor) -> dict: |
|
"""Box head forward function used in both training and testing. |
|
|
|
Args: |
|
x (tuple[Tensor]): List of multi-level img features. |
|
rois (Tensor): RoIs with the shape (n, 5) where the first |
|
column indicates batch id of each RoI. |
|
|
|
Returns: |
|
dict[str, Tensor]: Usually returns a dictionary with keys: |
|
|
|
- `cls_score` (Tensor): Classification scores. |
|
- `bbox_pred` (Tensor): Box energies / deltas. |
|
- `cls_score_ref` (Tensor): The cls_score after refine model. |
|
- `bbox_pred_ref` (Tensor): The bbox_pred after refine model. |
|
- `bbox_feats` (Tensor): Extract bbox RoI features. |
|
""" |
|
|
|
bbox_feats = self.bbox_roi_extractor( |
|
x[:self.bbox_roi_extractor.num_inputs], rois) |
|
bbox_results = self.bbox_head(bbox_feats) |
|
|
|
if self.bbox_head.with_refine: |
|
bbox_results = dict( |
|
cls_score=bbox_results[0], |
|
bbox_pred=bbox_results[1], |
|
cls_score_ref=bbox_results[2], |
|
bbox_pred_ref=bbox_results[3], |
|
bbox_feats=bbox_feats) |
|
else: |
|
bbox_results = dict( |
|
cls_score=bbox_results[0], |
|
bbox_pred=bbox_results[1], |
|
bbox_feats=bbox_feats) |
|
|
|
return bbox_results |
|
|
|
def bbox_loss(self, x: Tuple[Tensor], |
|
sampling_results: List[SamplingResult]) -> dict: |
|
"""Perform forward propagation and loss calculation of the bbox head on |
|
the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): List of multi-level img features. |
|
sampling_results (list["obj:`SamplingResult`]): Sampling results. |
|
|
|
Returns: |
|
dict[str, Tensor]: Usually returns a dictionary with keys: |
|
|
|
- `cls_score` (Tensor): Classification scores. |
|
- `bbox_pred` (Tensor): Box energies / deltas. |
|
- `bbox_feats` (Tensor): Extract bbox RoI features. |
|
- `loss_bbox` (dict): A dictionary of bbox loss components. |
|
""" |
|
rois = bbox2roi([res.priors for res in sampling_results]) |
|
bbox_results = self._bbox_forward(x, rois) |
|
|
|
|
|
if 'cls_score_ref' in bbox_results: |
|
bbox_loss_and_target = self.bbox_head.loss_and_target( |
|
cls_score=bbox_results['cls_score'], |
|
bbox_pred=bbox_results['bbox_pred'], |
|
rois=rois, |
|
sampling_results=sampling_results, |
|
rcnn_train_cfg=self.train_cfg) |
|
bbox_results.update(loss_bbox=bbox_loss_and_target['loss_bbox']) |
|
bbox_loss_and_target_ref = self.bbox_head.loss_and_target( |
|
cls_score=bbox_results['cls_score_ref'], |
|
bbox_pred=bbox_results['bbox_pred_ref'], |
|
rois=rois, |
|
sampling_results=sampling_results, |
|
rcnn_train_cfg=self.train_cfg) |
|
bbox_results['loss_bbox']['loss_rcnn_emd_ref'] = \ |
|
bbox_loss_and_target_ref['loss_bbox']['loss_rcnn_emd'] |
|
else: |
|
bbox_loss_and_target = self.bbox_head.loss_and_target( |
|
cls_score=bbox_results['cls_score'], |
|
bbox_pred=bbox_results['bbox_pred'], |
|
rois=rois, |
|
sampling_results=sampling_results, |
|
rcnn_train_cfg=self.train_cfg) |
|
bbox_results.update(loss_bbox=bbox_loss_and_target['loss_bbox']) |
|
|
|
return bbox_results |
|
|
|
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList, |
|
batch_data_samples: List[DetDataSample]) -> dict: |
|
"""Perform forward propagation and loss calculation of the detection |
|
roi on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): List of multi-level img features. |
|
rpn_results_list (list[:obj:`InstanceData`]): List of region |
|
proposals. |
|
batch_data_samples (list[:obj:`DetDataSample`]): The batch |
|
data samples. It usually includes information such |
|
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components |
|
""" |
|
assert len(rpn_results_list) == len(batch_data_samples) |
|
outputs = unpack_gt_instances(batch_data_samples) |
|
batch_gt_instances, batch_gt_instances_ignore, _ = outputs |
|
|
|
sampling_results = [] |
|
for i in range(len(batch_data_samples)): |
|
|
|
rpn_results = rpn_results_list[i] |
|
rpn_results.priors = rpn_results.pop('bboxes') |
|
|
|
assign_result = self.bbox_assigner.assign( |
|
rpn_results, batch_gt_instances[i], |
|
batch_gt_instances_ignore[i]) |
|
sampling_result = self.bbox_sampler.sample( |
|
assign_result, |
|
rpn_results, |
|
batch_gt_instances[i], |
|
batch_gt_instances_ignore=batch_gt_instances_ignore[i]) |
|
sampling_results.append(sampling_result) |
|
|
|
losses = dict() |
|
|
|
if self.with_bbox: |
|
bbox_results = self.bbox_loss(x, sampling_results) |
|
losses.update(bbox_results['loss_bbox']) |
|
|
|
return losses |
|
|
|
def predict_bbox(self, |
|
x: Tuple[Tensor], |
|
batch_img_metas: List[dict], |
|
rpn_results_list: InstanceList, |
|
rcnn_test_cfg: ConfigType, |
|
rescale: bool = False) -> InstanceList: |
|
"""Perform forward propagation of the bbox head and predict detection |
|
results on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Feature maps of all scale level. |
|
batch_img_metas (list[dict]): List of image information. |
|
rpn_results_list (list[:obj:`InstanceData`]): List of region |
|
proposals. |
|
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. |
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[:obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
""" |
|
proposals = [res.bboxes for res in rpn_results_list] |
|
rois = bbox2roi(proposals) |
|
|
|
if rois.shape[0] == 0: |
|
return empty_instances( |
|
batch_img_metas, rois.device, task_type='bbox') |
|
|
|
bbox_results = self._bbox_forward(x, rois) |
|
|
|
|
|
if 'cls_score_ref' in bbox_results: |
|
cls_scores = bbox_results['cls_score_ref'] |
|
bbox_preds = bbox_results['bbox_pred_ref'] |
|
else: |
|
cls_scores = bbox_results['cls_score'] |
|
bbox_preds = bbox_results['bbox_pred'] |
|
num_proposals_per_img = tuple(len(p) for p in proposals) |
|
rois = rois.split(num_proposals_per_img, 0) |
|
cls_scores = cls_scores.split(num_proposals_per_img, 0) |
|
|
|
if bbox_preds is not None: |
|
bbox_preds = bbox_preds.split(num_proposals_per_img, 0) |
|
else: |
|
bbox_preds = (None, ) * len(proposals) |
|
|
|
result_list = self.bbox_head.predict_by_feat( |
|
rois=rois, |
|
cls_scores=cls_scores, |
|
bbox_preds=bbox_preds, |
|
batch_img_metas=batch_img_metas, |
|
rcnn_test_cfg=rcnn_test_cfg, |
|
rescale=rescale) |
|
return result_list |
|
|