|
|
|
from typing import List, Optional, Tuple |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS, TASK_UTILS |
|
from mmdet.structures import DetDataSample, SampleList |
|
from mmdet.structures.bbox import bbox2roi |
|
from mmdet.utils import ConfigType, InstanceList |
|
from ..task_modules.samplers import SamplingResult |
|
from ..utils import empty_instances, unpack_gt_instances |
|
from .base_roi_head import BaseRoIHead |
|
|
|
|
|
@MODELS.register_module() |
|
class StandardRoIHead(BaseRoIHead): |
|
"""Simplest base roi head including one bbox head and one mask head.""" |
|
|
|
def init_assigner_sampler(self) -> None: |
|
"""Initialize assigner and sampler.""" |
|
self.bbox_assigner = None |
|
self.bbox_sampler = None |
|
if self.train_cfg: |
|
self.bbox_assigner = TASK_UTILS.build(self.train_cfg.assigner) |
|
self.bbox_sampler = TASK_UTILS.build( |
|
self.train_cfg.sampler, default_args=dict(context=self)) |
|
|
|
def init_bbox_head(self, bbox_roi_extractor: ConfigType, |
|
bbox_head: ConfigType) -> None: |
|
"""Initialize box head and box roi extractor. |
|
|
|
Args: |
|
bbox_roi_extractor (dict or ConfigDict): Config of box |
|
roi extractor. |
|
bbox_head (dict or ConfigDict): Config of box in box head. |
|
""" |
|
self.bbox_roi_extractor = MODELS.build(bbox_roi_extractor) |
|
self.bbox_head = MODELS.build(bbox_head) |
|
|
|
def init_mask_head(self, mask_roi_extractor: ConfigType, |
|
mask_head: ConfigType) -> None: |
|
"""Initialize mask head and mask roi extractor. |
|
|
|
Args: |
|
mask_roi_extractor (dict or ConfigDict): Config of mask roi |
|
extractor. |
|
mask_head (dict or ConfigDict): Config of mask in mask head. |
|
""" |
|
if mask_roi_extractor is not None: |
|
self.mask_roi_extractor = MODELS.build(mask_roi_extractor) |
|
self.share_roi_extractor = False |
|
else: |
|
self.share_roi_extractor = True |
|
self.mask_roi_extractor = self.bbox_roi_extractor |
|
self.mask_head = MODELS.build(mask_head) |
|
|
|
|
|
def forward(self, |
|
x: Tuple[Tensor], |
|
rpn_results_list: InstanceList, |
|
batch_data_samples: SampleList = None) -> tuple: |
|
"""Network forward process. Usually includes backbone, neck and head |
|
forward without any post-processing. |
|
|
|
Args: |
|
x (List[Tensor]): Multi-level features that may have different |
|
resolutions. |
|
rpn_results_list (list[:obj:`InstanceData`]): List of region |
|
proposals. |
|
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains |
|
the meta information of each image and corresponding |
|
annotations. |
|
|
|
Returns |
|
tuple: A tuple of features from ``bbox_head`` and ``mask_head`` |
|
forward. |
|
""" |
|
results = () |
|
proposals = [rpn_results.bboxes for rpn_results in rpn_results_list] |
|
rois = bbox2roi(proposals) |
|
|
|
if self.with_bbox: |
|
bbox_results = self._bbox_forward(x, rois) |
|
results = results + (bbox_results['cls_score'], |
|
bbox_results['bbox_pred']) |
|
|
|
if self.with_mask: |
|
mask_rois = rois[:100] |
|
mask_results = self._mask_forward(x, mask_rois) |
|
results = results + (mask_results['mask_preds'], ) |
|
return results |
|
|
|
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList, |
|
batch_data_samples: List[DetDataSample]) -> dict: |
|
"""Perform forward propagation and loss calculation of the detection |
|
roi on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): List of multi-level img features. |
|
rpn_results_list (list[:obj:`InstanceData`]): List of region |
|
proposals. |
|
batch_data_samples (list[:obj:`DetDataSample`]): The batch |
|
data samples. It usually includes information such |
|
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components |
|
""" |
|
assert len(rpn_results_list) == len(batch_data_samples) |
|
outputs = unpack_gt_instances(batch_data_samples) |
|
batch_gt_instances, batch_gt_instances_ignore, _ = outputs |
|
|
|
|
|
num_imgs = len(batch_data_samples) |
|
sampling_results = [] |
|
for i in range(num_imgs): |
|
|
|
rpn_results = rpn_results_list[i] |
|
rpn_results.priors = rpn_results.pop('bboxes') |
|
|
|
assign_result = self.bbox_assigner.assign( |
|
rpn_results, batch_gt_instances[i], |
|
batch_gt_instances_ignore[i]) |
|
sampling_result = self.bbox_sampler.sample( |
|
assign_result, |
|
rpn_results, |
|
batch_gt_instances[i], |
|
feats=[lvl_feat[i][None] for lvl_feat in x]) |
|
sampling_results.append(sampling_result) |
|
|
|
losses = dict() |
|
|
|
if self.with_bbox: |
|
bbox_results = self.bbox_loss(x, sampling_results) |
|
losses.update(bbox_results['loss_bbox']) |
|
|
|
|
|
if self.with_mask: |
|
mask_results = self.mask_loss(x, sampling_results, |
|
bbox_results['bbox_feats'], |
|
batch_gt_instances) |
|
losses.update(mask_results['loss_mask']) |
|
|
|
return losses |
|
|
|
def _bbox_forward(self, x: Tuple[Tensor], rois: Tensor) -> dict: |
|
"""Box head forward function used in both training and testing. |
|
|
|
Args: |
|
x (tuple[Tensor]): List of multi-level img features. |
|
rois (Tensor): RoIs with the shape (n, 5) where the first |
|
column indicates batch id of each RoI. |
|
|
|
Returns: |
|
dict[str, Tensor]: Usually returns a dictionary with keys: |
|
|
|
- `cls_score` (Tensor): Classification scores. |
|
- `bbox_pred` (Tensor): Box energies / deltas. |
|
- `bbox_feats` (Tensor): Extract bbox RoI features. |
|
""" |
|
|
|
bbox_feats = self.bbox_roi_extractor( |
|
x[:self.bbox_roi_extractor.num_inputs], rois) |
|
if self.with_shared_head: |
|
bbox_feats = self.shared_head(bbox_feats) |
|
cls_score, bbox_pred = self.bbox_head(bbox_feats) |
|
|
|
bbox_results = dict( |
|
cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats) |
|
return bbox_results |
|
|
|
def bbox_loss(self, x: Tuple[Tensor], |
|
sampling_results: List[SamplingResult]) -> dict: |
|
"""Perform forward propagation and loss calculation of the bbox head on |
|
the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): List of multi-level img features. |
|
sampling_results (list["obj:`SamplingResult`]): Sampling results. |
|
|
|
Returns: |
|
dict[str, Tensor]: Usually returns a dictionary with keys: |
|
|
|
- `cls_score` (Tensor): Classification scores. |
|
- `bbox_pred` (Tensor): Box energies / deltas. |
|
- `bbox_feats` (Tensor): Extract bbox RoI features. |
|
- `loss_bbox` (dict): A dictionary of bbox loss components. |
|
""" |
|
rois = bbox2roi([res.priors for res in sampling_results]) |
|
bbox_results = self._bbox_forward(x, rois) |
|
|
|
bbox_loss_and_target = self.bbox_head.loss_and_target( |
|
cls_score=bbox_results['cls_score'], |
|
bbox_pred=bbox_results['bbox_pred'], |
|
rois=rois, |
|
sampling_results=sampling_results, |
|
rcnn_train_cfg=self.train_cfg) |
|
|
|
bbox_results.update(loss_bbox=bbox_loss_and_target['loss_bbox']) |
|
return bbox_results |
|
|
|
def mask_loss(self, x: Tuple[Tensor], |
|
sampling_results: List[SamplingResult], bbox_feats: Tensor, |
|
batch_gt_instances: InstanceList) -> dict: |
|
"""Perform forward propagation and loss calculation of the mask head on |
|
the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Tuple of multi-level img features. |
|
sampling_results (list["obj:`SamplingResult`]): Sampling results. |
|
bbox_feats (Tensor): Extract bbox RoI features. |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes``, ``labels``, and |
|
``masks`` attributes. |
|
|
|
Returns: |
|
dict: Usually returns a dictionary with keys: |
|
|
|
- `mask_preds` (Tensor): Mask prediction. |
|
- `mask_feats` (Tensor): Extract mask RoI features. |
|
- `mask_targets` (Tensor): Mask target of each positive\ |
|
proposals in the image. |
|
- `loss_mask` (dict): A dictionary of mask loss components. |
|
""" |
|
if not self.share_roi_extractor: |
|
pos_rois = bbox2roi([res.pos_priors for res in sampling_results]) |
|
mask_results = self._mask_forward(x, pos_rois) |
|
else: |
|
pos_inds = [] |
|
device = bbox_feats.device |
|
for res in sampling_results: |
|
pos_inds.append( |
|
torch.ones( |
|
res.pos_priors.shape[0], |
|
device=device, |
|
dtype=torch.uint8)) |
|
pos_inds.append( |
|
torch.zeros( |
|
res.neg_priors.shape[0], |
|
device=device, |
|
dtype=torch.uint8)) |
|
pos_inds = torch.cat(pos_inds) |
|
|
|
mask_results = self._mask_forward( |
|
x, pos_inds=pos_inds, bbox_feats=bbox_feats) |
|
|
|
mask_loss_and_target = self.mask_head.loss_and_target( |
|
mask_preds=mask_results['mask_preds'], |
|
sampling_results=sampling_results, |
|
batch_gt_instances=batch_gt_instances, |
|
rcnn_train_cfg=self.train_cfg) |
|
|
|
mask_results.update(loss_mask=mask_loss_and_target['loss_mask']) |
|
return mask_results |
|
|
|
def _mask_forward(self, |
|
x: Tuple[Tensor], |
|
rois: Tensor = None, |
|
pos_inds: Optional[Tensor] = None, |
|
bbox_feats: Optional[Tensor] = None) -> dict: |
|
"""Mask head forward function used in both training and testing. |
|
|
|
Args: |
|
x (tuple[Tensor]): Tuple of multi-level img features. |
|
rois (Tensor): RoIs with the shape (n, 5) where the first |
|
column indicates batch id of each RoI. |
|
pos_inds (Tensor, optional): Indices of positive samples. |
|
Defaults to None. |
|
bbox_feats (Tensor): Extract bbox RoI features. Defaults to None. |
|
|
|
Returns: |
|
dict[str, Tensor]: Usually returns a dictionary with keys: |
|
|
|
- `mask_preds` (Tensor): Mask prediction. |
|
- `mask_feats` (Tensor): Extract mask RoI features. |
|
""" |
|
assert ((rois is not None) ^ |
|
(pos_inds is not None and bbox_feats is not None)) |
|
if rois is not None: |
|
mask_feats = self.mask_roi_extractor( |
|
x[:self.mask_roi_extractor.num_inputs], rois) |
|
if self.with_shared_head: |
|
mask_feats = self.shared_head(mask_feats) |
|
else: |
|
assert bbox_feats is not None |
|
mask_feats = bbox_feats[pos_inds] |
|
|
|
mask_preds = self.mask_head(mask_feats) |
|
mask_results = dict(mask_preds=mask_preds, mask_feats=mask_feats) |
|
return mask_results |
|
|
|
def predict_bbox(self, |
|
x: Tuple[Tensor], |
|
batch_img_metas: List[dict], |
|
rpn_results_list: InstanceList, |
|
rcnn_test_cfg: ConfigType, |
|
rescale: bool = False) -> InstanceList: |
|
"""Perform forward propagation of the bbox head and predict detection |
|
results on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Feature maps of all scale level. |
|
batch_img_metas (list[dict]): List of image information. |
|
rpn_results_list (list[:obj:`InstanceData`]): List of region |
|
proposals. |
|
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. |
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[:obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
""" |
|
proposals = [res.bboxes for res in rpn_results_list] |
|
rois = bbox2roi(proposals) |
|
|
|
if rois.shape[0] == 0: |
|
return empty_instances( |
|
batch_img_metas, |
|
rois.device, |
|
task_type='bbox', |
|
box_type=self.bbox_head.predict_box_type, |
|
num_classes=self.bbox_head.num_classes, |
|
score_per_cls=rcnn_test_cfg is None) |
|
|
|
bbox_results = self._bbox_forward(x, rois) |
|
|
|
|
|
cls_scores = bbox_results['cls_score'] |
|
bbox_preds = bbox_results['bbox_pred'] |
|
num_proposals_per_img = tuple(len(p) for p in proposals) |
|
rois = rois.split(num_proposals_per_img, 0) |
|
cls_scores = cls_scores.split(num_proposals_per_img, 0) |
|
|
|
|
|
if bbox_preds is not None: |
|
|
|
|
|
if isinstance(bbox_preds, torch.Tensor): |
|
bbox_preds = bbox_preds.split(num_proposals_per_img, 0) |
|
else: |
|
bbox_preds = self.bbox_head.bbox_pred_split( |
|
bbox_preds, num_proposals_per_img) |
|
else: |
|
bbox_preds = (None, ) * len(proposals) |
|
|
|
result_list = self.bbox_head.predict_by_feat( |
|
rois=rois, |
|
cls_scores=cls_scores, |
|
bbox_preds=bbox_preds, |
|
batch_img_metas=batch_img_metas, |
|
rcnn_test_cfg=rcnn_test_cfg, |
|
rescale=rescale) |
|
return result_list |
|
|
|
def predict_mask(self, |
|
x: Tuple[Tensor], |
|
batch_img_metas: List[dict], |
|
results_list: InstanceList, |
|
rescale: bool = False) -> InstanceList: |
|
"""Perform forward propagation of the mask head and predict detection |
|
results on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Feature maps of all scale level. |
|
batch_img_metas (list[dict]): List of image information. |
|
results_list (list[:obj:`InstanceData`]): Detection results of |
|
each image. |
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[:obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
- masks (Tensor): Has a shape (num_instances, H, W). |
|
""" |
|
|
|
bboxes = [res.bboxes for res in results_list] |
|
mask_rois = bbox2roi(bboxes) |
|
if mask_rois.shape[0] == 0: |
|
results_list = empty_instances( |
|
batch_img_metas, |
|
mask_rois.device, |
|
task_type='mask', |
|
instance_results=results_list, |
|
mask_thr_binary=self.test_cfg.mask_thr_binary) |
|
return results_list |
|
|
|
mask_results = self._mask_forward(x, mask_rois) |
|
mask_preds = mask_results['mask_preds'] |
|
|
|
num_mask_rois_per_img = [len(res) for res in results_list] |
|
mask_preds = mask_preds.split(num_mask_rois_per_img, 0) |
|
|
|
|
|
results_list = self.mask_head.predict_by_feat( |
|
mask_preds=mask_preds, |
|
results_list=results_list, |
|
batch_img_metas=batch_img_metas, |
|
rcnn_test_cfg=self.test_cfg, |
|
rescale=rescale) |
|
return results_list |
|
|