import gradio as gr from transformers.image_utils import load_image from threading import Thread import time import torch import spaces import cv2 import numpy as np from PIL import Image import re from transformers import ( Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer, ) from transformers import Qwen2_5_VLForConditionalGeneration # --------------------------- # Helper Functions # --------------------------- def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str: """ Returns an HTML snippet for a thin animated progress bar with a label. Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision. """ return f'''
{label}
''' def downsample_video(video_path): """ Downsamples a video file by extracting 10 evenly spaced frames. Returns a list of tuples (PIL.Image, timestamp). """ vidcap = cv2.VideoCapture(video_path) total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = vidcap.get(cv2.CAP_PROP_FPS) frames = [] if total_frames <= 0 or fps <= 0: vidcap.release() return frames # Determine 10 evenly spaced frame indices. frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) for i in frame_indices: vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) success, image = vidcap.read() if success: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(image) timestamp = round(i / fps, 2) frames.append((pil_image, timestamp)) vidcap.release() return frames def extract_medicine_names(text): """ Extracts medicine names from OCR text output. Uses a combination of pattern matching and formatting to identify medications. Returns a formatted list of medicines found. """ # Common medicine patterns (extended to catch more formats) lines = text.split('\n') medicines = [] # Look for patterns typical in prescriptions for line in lines: # Clean and standardize the line clean_line = line.strip() # Skip very short lines, headers, or non-relevant text if len(clean_line) < 3 or re.search(r'(prescription|rx|patient|name|date|doctor|hospital|clinic|address)', clean_line.lower()): continue # Medicine names often appear at the beginning of lines, with dosage info following # Look for tablet/capsule/mg indicators - strong indicators of medication if re.search(r'(tab|tablet|cap|capsule|mg|ml|injection|syrup|solution|suspension|ointment|cream|gel|patch|suppository|inhaler|drops)', clean_line.lower()): # Extract the likely medicine name - the part before the dosage/form or the entire line if it's short medicine_match = re.split(r'(\d+\s*mg|\d+\s*ml|\d+\s*tab|\d+\s*cap)', clean_line, 1)[0].strip() if medicine_match and len(medicine_match) > 2: medicines.append(medicine_match) # Check for brand names or generic medication patterns elif re.match(r'^[A-Z][a-z]+\s*[A-Z0-9]', clean_line) or re.match(r'^[A-Z][a-z]+', clean_line): # Likely a medicine name starting with a capital letter medicine_parts = re.split(r'(\d+|\s+\d+\s*times|\s+\d+\s*times\s+daily)', clean_line, 1) if medicine_parts and len(medicine_parts[0]) > 2: medicines.append(medicine_parts[0].strip()) # Remove duplicates while preserving order unique_medicines = [] for med in medicines: if med not in unique_medicines: unique_medicines.append(med) return unique_medicines # Model and Processor Setup # Qwen2VL OCR (default branch) QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # [or] prithivMLmods/Qwen2-VL-OCR2-2B-Instruct qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True) qwen_model = Qwen2VLForConditionalGeneration.from_pretrained( QV_MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16 ).to("cuda").eval() # RolmOCR branch (@RolmOCR) ROLMOCR_MODEL_ID = "reducto/RolmOCR" rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True) rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained( ROLMOCR_MODEL_ID, trust_remote_code=True, torch_dtype=torch.bfloat16 ).to("cuda").eval() # Main Inference Function @spaces.GPU def model_inference(input_dict, history): text = input_dict["text"].strip() files = input_dict.get("files", []) # Check for prescription-specific command if text.lower().startswith("@prescription") or text.lower().startswith("@med"): # Specific mode for medicine extraction if not files: yield "Error: Please upload a prescription image to extract medicine names." return # Use RolmOCR for better text extraction from prescriptions images = [load_image(image) for image in files[:1]] # Taking just the first image for processing messages = [{ "role": "user", "content": [ {"type": "image", "image": images[0]}, {"type": "text", "text": "Extract all text from this medical prescription image, focus on medicine names, dosages, and instructions."}, ], }] prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = rolmocr_processor( text=[prompt_full], images=images, return_tensors="pt", padding=True, ).to("cuda") # First, get the complete OCR text streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs) thread.start() ocr_text = "" yield progress_bar_html("Processing Prescription with Medicine Extractor") for new_text in streamer: ocr_text += new_text ocr_text = ocr_text.replace("<|im_end|>", "") time.sleep(0.01) # After getting full OCR text, extract medicine names medicines = extract_medicine_names(ocr_text) # Format the results nicely result = "## Extracted Medicine Names\n\n" if medicines: for i, med in enumerate(medicines, 1): result += f"{i}. {med}\n" else: result += "No medicine names detected in the prescription.\n\n" result += "\n\n## Full OCR Text\n\n```\n" + ocr_text + "\n```" yield result return # RolmOCR Inference (@RolmOCR) if text.lower().startswith("@rolmocr"): # Remove the tag from the query. text_prompt = text[len("@rolmocr"):].strip() # Check if a video is provided for inference. if files and isinstance(files[0], str) and files[0].lower().endswith((".mp4", ".avi", ".mov")): video_path = files[0] frames = downsample_video(video_path) if not frames: yield "Error: Could not extract frames from the video." return # Build the message: prompt followed by each frame with its timestamp. content_list = [{"type": "text", "text": text_prompt}] for image, timestamp in frames: content_list.append({"type": "text", "text": f"Frame {timestamp}:"}) content_list.append({"type": "image", "image": image}) messages = [{"role": "user", "content": content_list}] # For video, extract images only. video_images = [image for image, _ in frames] prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = rolmocr_processor( text=[prompt_full], images=video_images, return_tensors="pt", padding=True, ).to("cuda") else: # Assume image(s) or text query. if len(files) > 1: images = [load_image(image) for image in files] elif len(files) == 1: images = [load_image(files[0])] else: images = [] if text_prompt == "" and not images: yield "Error: Please input a text query and/or provide an image for the @RolmOCR feature." return messages = [{ "role": "user", "content": [ *[{"type": "image", "image": image} for image in images], {"type": "text", "text": text_prompt}, ], }] prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = rolmocr_processor( text=[prompt_full], images=images if images else None, return_tensors="pt", padding=True, ).to("cuda") streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs) thread.start() buffer = "" # Use a different color scheme for RolmOCR (purple-themed). yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)") for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) yield buffer return # Default Inference: Qwen2VL OCR # Process files: support multiple images. if len(files) > 1: images = [load_image(image) for image in files] elif len(files) == 1: images = [load_image(files[0])] else: images = [] if text == "" and not images: yield "Error: Please input a text query and optionally image(s)." return if text == "" and images: yield "Error: Please input a text query along with the image(s)." return messages = [{ "role": "user", "content": [ *[{"type": "image", "image": image} for image in images], {"type": "text", "text": text}, ], }] prompt_full = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = qwen_processor( text=[prompt_full], images=images if images else None, return_tensors="pt", padding=True, ).to("cuda") streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs) thread.start() buffer = "" yield progress_bar_html("Processing with Qwen2VL OCR") for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) yield buffer # Gradio Interface examples = [ [{"text": "@Prescription Extract medicines from this prescription", "files": ["examples/prescription1.jpg"]}], [{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}], [{"text": "@RolmOCR Explain the Ad in Detail", "files": ["examples/videoplayback.mp4"]}], [{"text": "@RolmOCR OCR the Image", "files": ["rolm/3.jpeg"]}], [{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}], ] css = """ .gradio-container { font-family: 'Roboto', sans-serif; } .prescription-header { background-color: #4B0082; color: white; padding: 10px; border-radius: 5px; margin-bottom: 10px; } """ description = """ # **Multimodal OCR with Medicine Extraction** ## Modes: - **@Prescription** - Upload a prescription image to extract medicine names - **@RolmOCR** - Use RolmOCR for general text extraction - **Default** - Use Qwen2VL OCR for general purposes Upload your medical prescription images and get the medicine names extracted automatically! """ demo = gr.ChatInterface( fn=model_inference, description=description, examples=examples, textbox=gr.MultimodalTextbox( label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="Use @Prescription to extract medicines, @RolmOCR for RolmOCR, or leave blank for default Qwen2VL OCR" ), stop_btn="Stop Generation", multimodal=True, cache_examples=False, css=css ) demo.launch(debug=True)