File size: 5,985 Bytes
9e46f6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
from resources import banner, error_html_response
model_checkpoint = 'gastronomia-para-to2/gastronomia_para_to2'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForCausalLM.from_pretrained(model_checkpoint)
special_tokens = [
'<INPUT_START>',
'<NEXT_INPUT>',
'<INPUT_END>',
'<TITLE_START>',
'<TITLE_END>',
'<INGR_START>',
'<NEXT_INGR>',
'<INGR_END>',
'<INSTR_START>',
'<NEXT_INSTR>',
'<INSTR_END>']
def frame_html_response(html_response):
return f"""<iframe style="width: 100%; height: 800px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html_response}'></iframe>"""
def check_special_tokens_order(pre_output):
return (pre_output.find('<INPUT_START>') <
pre_output.find('<NEXT_INPUT>') <=
pre_output.rfind('<NEXT_INPUT>') <
pre_output.find('<INPUT_END>') <
pre_output.find('<INGR_START>') <
pre_output.find('<NEXT_INGR>') <=
pre_output.rfind('<NEXT_INGR>') <
pre_output.find('<INGR_END>') <
pre_output.find('<INSTR_START>') <
pre_output.find('<NEXT_INSTR>') <=
pre_output.rfind('<NEXT_INSTR>') <
pre_output.find('<INSTR_END>') <
pre_output.find('<TITLE_START>') <
pre_output.find('<TITLE_END>'))
def make_html_response(title, ingredients, instructions):
ingredients_html_list = '<ul><li>' + '</li><li>'.join(ingredients) + '</li></ul>'
instructions_html_list = '<ol><li>' + '</li><li>'.join(instructions) + '</li></ol>'
html_response = f'''
<!DOCTYPE html>
<html>
<body>
<h1>{title}</h1>
<h2>Ingredientes</h2>
{ingredients_html_list}
<h2>Instrucciones</h2>
{instructions_html_list}
</body>
</html>
'''
return html_response
def rerun_model_output(pre_output):
if pre_output is None:
return True
elif not '<RECIPE_END>' in pre_output:
print('<RECIPE_END> not in pre_output')
return True
pre_output_trimmed = pre_output[:pre_output.find('<RECIPE_END>')]
if not all(special_token in pre_output_trimmed for special_token in special_tokens):
print('Not all special tokens are in preoutput')
return True
elif not check_special_tokens_order(pre_output_trimmed):
print('Special tokens are unordered in preoutput')
return True
elif len(pre_output_trimmed.split())<75:
print('Length of the recipe is <75')
return True
else:
return False
def generate_output(tokenized_input):
pre_output = None
while rerun_model_output(pre_output):
output = model.generate(**tokenized_input,
max_length=600,
do_sample=True,
top_p=0.92,
top_k=50,
# no_repeat_ngram_size=2,
num_return_sequences=3)
pre_output = tokenizer.decode(output[0], skip_special_tokens=False)
pre_output_trimmed = pre_output[:pre_output.find('<RECIPE_END>')]
return pre_output_trimmed
def check_wrong_ingredients(ingredients):
if ingredients is None:
return True
if any(ingredient.startswith('De') for ingredient in ingredients):
print('At least one ingredient starts with De')
return True
def make_recipe(input_ingredients):
input_ingredients = re.sub(' y ', ', ', input_ingredients)
input = '<RECIPE_START> '
input += '<INPUT_START> ' + ' <NEXT_INPUT> '.join(input_ingredients.split(', ')) + ' <INPUT_END> '
input += '<INGR_START> '
tokenized_input = tokenizer(input, return_tensors='pt')
output_ingredients = None
i = 0
while check_wrong_ingredients(output_ingredients):
if i == 4:
return frame_html_response(error_html_response)
pre_output_trimmed = generate_output(tokenized_input)
output_ingredients = re.search('<INGR_START> (.*) <INGR_END>', pre_output_trimmed).group(1)
output_ingredients = output_ingredients.split(' <NEXT_INGR> ')
output_ingredients = list(set([output_ingredient.strip() for output_ingredient in output_ingredients]))
output_ingredients = [output_ing.capitalize() for output_ing in output_ingredients]
i += 1
output_title = re.search('<TITLE_START> (.*) <TITLE_END>', pre_output_trimmed).group(1).strip().capitalize()
output_instructions = re.search('<INSTR_START> (.*) <INSTR_END>', pre_output_trimmed).group(1)
output_instructions = output_instructions.split(' <NEXT_INSTR> ')
html_response = make_html_response(output_title, output_ingredients, output_instructions)
return frame_html_response(html_response)
iface = gr.Interface(
fn=make_recipe,
inputs=
[
gr.inputs.Textbox(lines=1, placeholder='ingrediente_1, ingrediente_2, ..., ingrediente_n',
label='Dime con qué ingredientes quieres que cocinemos hoy y te sugeriremos una receta tan pronto como nuestros fogones estén libres'),
],
outputs=
[
gr.outputs.HTML(label="¡Esta es mi propuesta para ti! ¡Buen provecho!")
],
examples=
[
['salmón, zumo de naranja, aceite de oliva, sal, pimienta'],
['harina, azúcar, huevos, chocolate, levadura Royal']
],
description=banner)
iface.launch(enable_queue=True)
|