srochaeduardo commited on
Commit
c2169be
·
verified ·
1 Parent(s): fea6591

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -60
app.py CHANGED
@@ -1,64 +1,54 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import fitz # PyMuPDF
3
+ import requests
4
+ from transformers import pipeline
5
+
6
+ # Carrega o modelo de resumo (pode ser um modelo do Hugging Face Hub)
7
+ # Exemplo: "facebook/bart-large-cnn" (bom para inglês, mas há modelos melhores para português)
8
+ # "unicamp-dl/mt5-base-multi-pt-br-summary" (modelo em português)
9
+ summarizer = pipeline("summarization", model="unicamp-dl/mt5-base-multi-pt-br-summary")
10
+
11
+
12
+ def download_pdf(url):
13
+ """Baixa o PDF da URL."""
14
+ response = requests.get(url)
15
+ response.raise_for_status() # Lança um erro se a URL for inválida
16
+ return response.content
17
+
18
+
19
+ def extract_text_from_pdf(pdf_bytes):
20
+ """Extrai o texto do PDF usando PyMuPDF."""
21
+ text = ""
22
+ with fitz.open(stream=pdf_bytes, filetype="pdf") as doc:
23
+ for page in doc:
24
+ text += page.get_text()
25
+ return text
26
+
27
+ def summarize_pdf(url):
28
+ """Baixa, extrai o texto e resume o PDF."""
29
+ try:
30
+ pdf_bytes = download_pdf(url)
31
+ text = extract_text_from_pdf(pdf_bytes)
32
+
33
+ # Resume o texto. Ajuste max_length e min_length conforme necessário.
34
+ summary = summarizer(text, max_length=500, min_length=100, do_sample=False)[0]['summary_text']
35
+ return summary
36
+ except requests.exceptions.RequestException as e:
37
+ return f"Erro ao baixar o PDF: {e}"
38
+ except Exception as e:
39
+ return f"Erro ao processar o PDF: {e}"
40
+
41
+
42
+
43
+ # Cria a interface Gradio
44
+ iface = gr.Interface(
45
+ fn=summarize_pdf,
46
+ inputs=gr.Textbox(label="URL do PDF", value="https://ww2.trt2.jus.br/fileadmin/memorial/CMV/ACORDAOS/1966/3901.4200/AC_1966_03902.pdf"), # URL padrão
47
+ outputs=gr.Textbox(label="Resumo do PDF"),
48
+ title="Resumidor de PDF",
49
+ description="Insira a URL de um PDF para obter um resumo.",
 
 
 
 
 
 
 
 
 
 
50
  )
51
 
52
+ iface.launch()
53
+
54