Spaces:
Running
Running
File size: 37,365 Bytes
4342d5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 |
import fs from 'node:fs';
import path from 'node:path';
import { Buffer } from 'node:buffer';
import express from 'express';
import { sync as writeFileAtomicSync } from 'write-file-atomic';
import { Tokenizer } from '@agnai/web-tokenizers';
import { SentencePieceProcessor } from '@agnai/sentencepiece-js';
import tiktoken from 'tiktoken';
import { convertClaudePrompt } from '../prompt-converters.js';
import { TEXTGEN_TYPES } from '../constants.js';
import { setAdditionalHeaders } from '../additional-headers.js';
import { getConfigValue, isValidUrl } from '../util.js';
/**
* @typedef { (req: import('express').Request, res: import('express').Response) => Promise<any> } TokenizationHandler
*/
/**
* @type {{[key: string]: import('tiktoken').Tiktoken}} Tokenizers cache
*/
const tokenizersCache = {};
/**
* @type {string[]}
*/
export const TEXT_COMPLETION_MODELS = [
'gpt-3.5-turbo-instruct',
'gpt-3.5-turbo-instruct-0914',
'text-davinci-003',
'text-davinci-002',
'text-davinci-001',
'text-curie-001',
'text-babbage-001',
'text-ada-001',
'code-davinci-002',
'code-davinci-001',
'code-cushman-002',
'code-cushman-001',
'text-davinci-edit-001',
'code-davinci-edit-001',
'text-embedding-ada-002',
'text-similarity-davinci-001',
'text-similarity-curie-001',
'text-similarity-babbage-001',
'text-similarity-ada-001',
'text-search-davinci-doc-001',
'text-search-curie-doc-001',
'text-search-babbage-doc-001',
'text-search-ada-doc-001',
'code-search-babbage-code-001',
'code-search-ada-code-001',
];
const CHARS_PER_TOKEN = 3.35;
const IS_DOWNLOAD_ALLOWED = getConfigValue('enableDownloadableTokenizers', true, 'boolean');
/**
* Gets a path to the tokenizer model. Downloads the model if it's a URL.
* @param {string} model Model URL or path
* @param {string|undefined} fallbackModel Fallback model path\
* @returns {Promise<string>} Path to the tokenizer model
*/
async function getPathToTokenizer(model, fallbackModel) {
if (!isValidUrl(model)) {
return model;
}
try {
const url = new URL(model);
if (!['https:', 'http:'].includes(url.protocol)) {
throw new Error('Invalid URL protocol');
}
const fileName = url.pathname.split('/').pop();
if (!fileName) {
throw new Error('Failed to extract the file name from the URL');
}
const CACHE_PATH = path.join(globalThis.DATA_ROOT, '_cache');
if (!fs.existsSync(CACHE_PATH)) {
fs.mkdirSync(CACHE_PATH, { recursive: true });
}
const cachedFile = path.join(CACHE_PATH, fileName);
if (fs.existsSync(cachedFile)) {
return cachedFile;
}
if (!IS_DOWNLOAD_ALLOWED) {
throw new Error('Downloading tokenizers is disabled, the model is not cached');
}
console.info('Downloading tokenizer model:', model);
const response = await fetch(model);
if (!response.ok) {
throw new Error(`Failed to fetch the model: ${response.status} ${response.statusText}`);
}
const arrayBuffer = await response.arrayBuffer();
writeFileAtomicSync(cachedFile, Buffer.from(arrayBuffer));
return cachedFile;
} catch (error) {
const getLastSegment = str => str?.split('/')?.pop() || '';
if (fallbackModel) {
console.error(`Could not get a tokenizer from ${getLastSegment(model)}. Reason: ${error.message}. Using a fallback model: ${getLastSegment(fallbackModel)}.`);
return fallbackModel;
}
throw new Error(`Failed to instantiate a tokenizer and fallback is not provided. Reason: ${error.message}`);
}
}
/**
* Sentencepiece tokenizer for tokenizing text.
*/
class SentencePieceTokenizer {
/**
* @type {import('@agnai/sentencepiece-js').SentencePieceProcessor} Sentencepiece tokenizer instance
*/
#instance;
/**
* @type {string} Path to the tokenizer model
*/
#model;
/**
* @type {string|undefined} Path to the fallback model
*/
#fallbackModel;
/**
* Creates a new Sentencepiece tokenizer.
* @param {string} model Path to the tokenizer model
* @param {string} [fallbackModel] Path to the fallback model
*/
constructor(model, fallbackModel) {
this.#model = model;
this.#fallbackModel = fallbackModel;
}
/**
* Gets the Sentencepiece tokenizer instance.
* @returns {Promise<import('@agnai/sentencepiece-js').SentencePieceProcessor|null>} Sentencepiece tokenizer instance
*/
async get() {
if (this.#instance) {
return this.#instance;
}
try {
const pathToModel = await getPathToTokenizer(this.#model, this.#fallbackModel);
this.#instance = new SentencePieceProcessor();
await this.#instance.load(pathToModel);
console.info('Instantiated the tokenizer for', path.parse(pathToModel).name);
return this.#instance;
} catch (error) {
console.error('Sentencepiece tokenizer failed to load: ' + this.#model, error);
return null;
}
}
}
/**
* Web tokenizer for tokenizing text.
*/
class WebTokenizer {
/**
* @type {Tokenizer} Web tokenizer instance
*/
#instance;
/**
* @type {string} Path to the tokenizer model
*/
#model;
/**
* @type {string|undefined} Path to the fallback model
*/
#fallbackModel;
/**
* Creates a new Web tokenizer.
* @param {string} model Path to the tokenizer model
* @param {string} [fallbackModel] Path to the fallback model
*/
constructor(model, fallbackModel) {
this.#model = model;
this.#fallbackModel = fallbackModel;
}
/**
* Gets the Web tokenizer instance.
* @returns {Promise<Tokenizer|null>} Web tokenizer instance
*/
async get() {
if (this.#instance) {
return this.#instance;
}
try {
const pathToModel = await getPathToTokenizer(this.#model, this.#fallbackModel);
const arrayBuffer = fs.readFileSync(pathToModel).buffer;
this.#instance = await Tokenizer.fromJSON(arrayBuffer);
console.info('Instantiated the tokenizer for', path.parse(pathToModel).name);
return this.#instance;
} catch (error) {
console.error('Web tokenizer failed to load: ' + this.#model, error);
return null;
}
}
}
const spp_llama = new SentencePieceTokenizer('src/tokenizers/llama.model');
const spp_nerd = new SentencePieceTokenizer('src/tokenizers/nerdstash.model');
const spp_nerd_v2 = new SentencePieceTokenizer('src/tokenizers/nerdstash_v2.model');
const spp_mistral = new SentencePieceTokenizer('src/tokenizers/mistral.model');
const spp_yi = new SentencePieceTokenizer('src/tokenizers/yi.model');
const spp_gemma = new SentencePieceTokenizer('src/tokenizers/gemma.model');
const spp_jamba = new SentencePieceTokenizer('src/tokenizers/jamba.model');
const claude_tokenizer = new WebTokenizer('src/tokenizers/claude.json');
const llama3_tokenizer = new WebTokenizer('src/tokenizers/llama3.json');
const commandRTokenizer = new WebTokenizer('https://github.com/SillyTavern/SillyTavern-Tokenizers/raw/main/command-r.json', 'src/tokenizers/llama3.json');
const commandATokenizer = new WebTokenizer('https://github.com/SillyTavern/SillyTavern-Tokenizers/raw/main/command-a.json', 'src/tokenizers/llama3.json');
const qwen2Tokenizer = new WebTokenizer('https://github.com/SillyTavern/SillyTavern-Tokenizers/raw/main/qwen2.json', 'src/tokenizers/llama3.json');
const nemoTokenizer = new WebTokenizer('https://github.com/SillyTavern/SillyTavern-Tokenizers/raw/main/nemo.json', 'src/tokenizers/llama3.json');
const deepseekTokenizer = new WebTokenizer('https://github.com/SillyTavern/SillyTavern-Tokenizers/raw/main/deepseek.json', 'src/tokenizers/llama3.json');
export const sentencepieceTokenizers = [
'llama',
'nerdstash',
'nerdstash_v2',
'mistral',
'yi',
'gemma',
'jamba',
];
export const webTokenizers = [
'claude',
'llama3',
'command-r',
'command-a',
'qwen2',
'nemo',
'deepseek',
];
/**
* Gets the Sentencepiece tokenizer by the model name.
* @param {string} model Sentencepiece model name
* @returns {SentencePieceTokenizer|null} Sentencepiece tokenizer
*/
export function getSentencepiceTokenizer(model) {
if (model.includes('llama')) {
return spp_llama;
}
if (model.includes('nerdstash')) {
return spp_nerd;
}
if (model.includes('mistral')) {
return spp_mistral;
}
if (model.includes('nerdstash_v2')) {
return spp_nerd_v2;
}
if (model.includes('yi')) {
return spp_yi;
}
if (model.includes('gemma')) {
return spp_gemma;
}
if (model.includes('jamba')) {
return spp_jamba;
}
return null;
}
/**
* Gets the Web tokenizer by the model name.
* @param {string} model Web tokenizer model name
* @returns {WebTokenizer|null} Web tokenizer
*/
export function getWebTokenizer(model) {
if (model.includes('llama3')) {
return llama3_tokenizer;
}
if (model.includes('claude')) {
return claude_tokenizer;
}
if (model.includes('command-r')) {
return commandRTokenizer;
}
if (model.includes('command-a')) {
return commandATokenizer;
}
if (model.includes('qwen2')) {
return qwen2Tokenizer;
}
if (model.includes('nemo')) {
return nemoTokenizer;
}
if (model.includes('deepseek')) {
return deepseekTokenizer;
}
return null;
}
/**
* Counts the token ids for the given text using the Sentencepiece tokenizer.
* @param {SentencePieceTokenizer} tokenizer Sentencepiece tokenizer
* @param {string} text Text to tokenize
* @returns { Promise<{ids: number[], count: number}> } Tokenization result
*/
async function countSentencepieceTokens(tokenizer, text) {
const instance = await tokenizer?.get();
// Fallback to strlen estimation
if (!instance) {
return {
ids: [],
count: Math.ceil(text.length / CHARS_PER_TOKEN),
};
}
let cleaned = text; // cleanText(text); <-- cleaning text can result in an incorrect tokenization
let ids = instance.encodeIds(cleaned);
return {
ids,
count: ids.length,
};
}
/**
* Counts the tokens in the given array of objects using the Sentencepiece tokenizer.
* @param {SentencePieceTokenizer} tokenizer
* @param {object[]} array Array of objects to tokenize
* @returns {Promise<number>} Number of tokens
*/
async function countSentencepieceArrayTokens(tokenizer, array) {
const jsonBody = array.flatMap(x => Object.values(x)).join('\n\n');
const result = await countSentencepieceTokens(tokenizer, jsonBody);
const num_tokens = result.count;
return num_tokens;
}
async function getTiktokenChunks(tokenizer, ids) {
const decoder = new TextDecoder();
const chunks = [];
for (let i = 0; i < ids.length; i++) {
const id = ids[i];
const chunkTextBytes = await tokenizer.decode(new Uint32Array([id]));
const chunkText = decoder.decode(chunkTextBytes);
chunks.push(chunkText);
}
return chunks;
}
/**
* Gets the token chunks for the given token IDs using the Web tokenizer.
* @param {Tokenizer} tokenizer Web tokenizer instance
* @param {number[]} ids Token IDs
* @returns {string[]} Token chunks
*/
function getWebTokenizersChunks(tokenizer, ids) {
const chunks = [];
for (let i = 0, lastProcessed = 0; i < ids.length; i++) {
const chunkIds = ids.slice(lastProcessed, i + 1);
const chunkText = tokenizer.decode(new Int32Array(chunkIds));
if (chunkText === '�') {
continue;
}
chunks.push(chunkText);
lastProcessed = i + 1;
}
return chunks;
}
/**
* Gets the tokenizer model by the model name.
* @param {string} requestModel Models to use for tokenization
* @returns {string} Tokenizer model to use
*/
export function getTokenizerModel(requestModel) {
if (requestModel === 'o1' || requestModel.includes('o1-preview') || requestModel.includes('o1-mini') || requestModel.includes('o3-mini')) {
return 'o1';
}
if (requestModel.includes('gpt-4o') || requestModel.includes('chatgpt-4o-latest')) {
return 'gpt-4o';
}
if (requestModel.includes('gpt-4.5-preview')) {
return 'gpt-4o';
}
if (requestModel.includes('gpt-4-32k')) {
return 'gpt-4-32k';
}
if (requestModel.includes('gpt-4')) {
return 'gpt-4';
}
if (requestModel.includes('gpt-3.5-turbo-0301')) {
return 'gpt-3.5-turbo-0301';
}
if (requestModel.includes('gpt-3.5-turbo')) {
return 'gpt-3.5-turbo';
}
if (TEXT_COMPLETION_MODELS.includes(requestModel)) {
return requestModel;
}
if (requestModel.includes('claude')) {
return 'claude';
}
if (requestModel.includes('llama3') || requestModel.includes('llama-3')) {
return 'llama3';
}
if (requestModel.includes('llama')) {
return 'llama';
}
if (requestModel.includes('mistral')) {
return 'mistral';
}
if (requestModel.includes('yi')) {
return 'yi';
}
if (requestModel.includes('deepseek')) {
return 'deepseek';
}
if (requestModel.includes('gemma') || requestModel.includes('gemini')) {
return 'gemma';
}
if (requestModel.includes('jamba')) {
return 'jamba';
}
if (requestModel.includes('qwen2')) {
return 'qwen2';
}
if (requestModel.includes('command-r')) {
return 'command-r';
}
if (requestModel.includes('command-a')) {
return 'command-a';
}
if (requestModel.includes('nemo')) {
return 'nemo';
}
// default
return 'gpt-3.5-turbo';
}
export function getTiktokenTokenizer(model) {
if (tokenizersCache[model]) {
return tokenizersCache[model];
}
const tokenizer = tiktoken.encoding_for_model(model);
console.info('Instantiated the tokenizer for', model);
tokenizersCache[model] = tokenizer;
return tokenizer;
}
/**
* Counts the tokens for the given messages using the WebTokenizer and Claude prompt conversion.
* @param {Tokenizer} tokenizer Web tokenizer
* @param {object[]} messages Array of messages
* @returns {number} Number of tokens
*/
export function countWebTokenizerTokens(tokenizer, messages) {
// Should be fine if we use the old conversion method instead of the messages API one i think?
const convertedPrompt = convertClaudePrompt(messages, false, '', false, false, '', false);
// Fallback to strlen estimation
if (!tokenizer) {
return Math.ceil(convertedPrompt.length / CHARS_PER_TOKEN);
}
const count = tokenizer.encode(convertedPrompt).length;
return count;
}
/**
* Creates an API handler for encoding Sentencepiece tokens.
* @param {SentencePieceTokenizer} tokenizer Sentencepiece tokenizer
* @returns {TokenizationHandler} Handler function
*/
function createSentencepieceEncodingHandler(tokenizer) {
/**
* Request handler for encoding Sentencepiece tokens.
* @param {import('express').Request} request
* @param {import('express').Response} response
*/
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const text = request.body.text || '';
const instance = await tokenizer?.get();
const { ids, count } = await countSentencepieceTokens(tokenizer, text);
const chunks = instance?.encodePieces(text);
return response.send({ ids, count, chunks });
} catch (error) {
console.error(error);
return response.send({ ids: [], count: 0, chunks: [] });
}
};
}
/**
* Creates an API handler for decoding Sentencepiece tokens.
* @param {SentencePieceTokenizer} tokenizer Sentencepiece tokenizer
* @returns {TokenizationHandler} Handler function
*/
function createSentencepieceDecodingHandler(tokenizer) {
/**
* Request handler for decoding Sentencepiece tokens.
* @param {import('express').Request} request
* @param {import('express').Response} response
*/
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const ids = request.body.ids || [];
const instance = await tokenizer?.get();
if (!instance) throw new Error('Failed to load the Sentencepiece tokenizer');
const ops = ids.map(id => instance.decodeIds([id]));
const chunks = await Promise.all(ops);
const text = chunks.join('');
return response.send({ text, chunks });
} catch (error) {
console.error(error);
return response.send({ text: '', chunks: [] });
}
};
}
/**
* Creates an API handler for encoding Tiktoken tokens.
* @param {string} modelId Tiktoken model ID
* @returns {TokenizationHandler} Handler function
*/
function createTiktokenEncodingHandler(modelId) {
/**
* Request handler for encoding Tiktoken tokens.
* @param {import('express').Request} request
* @param {import('express').Response} response
*/
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const text = request.body.text || '';
const tokenizer = getTiktokenTokenizer(modelId);
const tokens = Object.values(tokenizer.encode(text));
const chunks = await getTiktokenChunks(tokenizer, tokens);
return response.send({ ids: tokens, count: tokens.length, chunks });
} catch (error) {
console.error(error);
return response.send({ ids: [], count: 0, chunks: [] });
}
};
}
/**
* Creates an API handler for decoding Tiktoken tokens.
* @param {string} modelId Tiktoken model ID
* @returns {TokenizationHandler} Handler function
*/
function createTiktokenDecodingHandler(modelId) {
/**
* Request handler for decoding Tiktoken tokens.
* @param {import('express').Request} request
* @param {import('express').Response} response
*/
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const ids = request.body.ids || [];
const tokenizer = getTiktokenTokenizer(modelId);
const textBytes = tokenizer.decode(new Uint32Array(ids));
const text = new TextDecoder().decode(textBytes);
return response.send({ text });
} catch (error) {
console.error(error);
return response.send({ text: '' });
}
};
}
/**
* Creates an API handler for encoding WebTokenizer tokens.
* @param {WebTokenizer} tokenizer WebTokenizer instance
* @returns {TokenizationHandler} Handler function
*/
function createWebTokenizerEncodingHandler(tokenizer) {
/**
* Request handler for encoding WebTokenizer tokens.
* @param {import('express').Request} request
* @param {import('express').Response} response
*/
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const text = request.body.text || '';
const instance = await tokenizer?.get();
if (!instance) throw new Error('Failed to load the Web tokenizer');
const tokens = Array.from(instance.encode(text));
const chunks = getWebTokenizersChunks(instance, tokens);
return response.send({ ids: tokens, count: tokens.length, chunks });
} catch (error) {
console.error(error);
return response.send({ ids: [], count: 0, chunks: [] });
}
};
}
/**
* Creates an API handler for decoding WebTokenizer tokens.
* @param {WebTokenizer} tokenizer WebTokenizer instance
* @returns {TokenizationHandler} Handler function
*/
function createWebTokenizerDecodingHandler(tokenizer) {
/**
* Request handler for decoding WebTokenizer tokens.
* @param {import('express').Request} request
* @param {import('express').Response} response
* @returns {Promise<any>}
*/
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const ids = request.body.ids || [];
const instance = await tokenizer?.get();
if (!instance) throw new Error('Failed to load the Web tokenizer');
const chunks = getWebTokenizersChunks(instance, ids);
const text = instance.decode(new Int32Array(ids));
return response.send({ text, chunks });
} catch (error) {
console.error(error);
return response.send({ text: '', chunks: [] });
}
};
}
export const router = express.Router();
router.post('/llama/encode', createSentencepieceEncodingHandler(spp_llama));
router.post('/nerdstash/encode', createSentencepieceEncodingHandler(spp_nerd));
router.post('/nerdstash_v2/encode', createSentencepieceEncodingHandler(spp_nerd_v2));
router.post('/mistral/encode', createSentencepieceEncodingHandler(spp_mistral));
router.post('/yi/encode', createSentencepieceEncodingHandler(spp_yi));
router.post('/gemma/encode', createSentencepieceEncodingHandler(spp_gemma));
router.post('/jamba/encode', createSentencepieceEncodingHandler(spp_jamba));
router.post('/gpt2/encode', createTiktokenEncodingHandler('gpt2'));
router.post('/claude/encode', createWebTokenizerEncodingHandler(claude_tokenizer));
router.post('/llama3/encode', createWebTokenizerEncodingHandler(llama3_tokenizer));
router.post('/qwen2/encode', createWebTokenizerEncodingHandler(qwen2Tokenizer));
router.post('/command-r/encode', createWebTokenizerEncodingHandler(commandRTokenizer));
router.post('/command-a/encode', createWebTokenizerEncodingHandler(commandATokenizer));
router.post('/nemo/encode', createWebTokenizerEncodingHandler(nemoTokenizer));
router.post('/deepseek/encode', createWebTokenizerEncodingHandler(deepseekTokenizer));
router.post('/llama/decode', createSentencepieceDecodingHandler(spp_llama));
router.post('/nerdstash/decode', createSentencepieceDecodingHandler(spp_nerd));
router.post('/nerdstash_v2/decode', createSentencepieceDecodingHandler(spp_nerd_v2));
router.post('/mistral/decode', createSentencepieceDecodingHandler(spp_mistral));
router.post('/yi/decode', createSentencepieceDecodingHandler(spp_yi));
router.post('/gemma/decode', createSentencepieceDecodingHandler(spp_gemma));
router.post('/jamba/decode', createSentencepieceDecodingHandler(spp_jamba));
router.post('/gpt2/decode', createTiktokenDecodingHandler('gpt2'));
router.post('/claude/decode', createWebTokenizerDecodingHandler(claude_tokenizer));
router.post('/llama3/decode', createWebTokenizerDecodingHandler(llama3_tokenizer));
router.post('/qwen2/decode', createWebTokenizerDecodingHandler(qwen2Tokenizer));
router.post('/command-r/decode', createWebTokenizerDecodingHandler(commandRTokenizer));
router.post('/command-a/decode', createWebTokenizerDecodingHandler(commandATokenizer));
router.post('/nemo/decode', createWebTokenizerDecodingHandler(nemoTokenizer));
router.post('/deepseek/decode', createWebTokenizerDecodingHandler(deepseekTokenizer));
router.post('/openai/encode', async function (req, res) {
try {
const queryModel = String(req.query.model || '');
if (queryModel.includes('llama3') || queryModel.includes('llama-3')) {
const handler = createWebTokenizerEncodingHandler(llama3_tokenizer);
return handler(req, res);
}
if (queryModel.includes('llama')) {
const handler = createSentencepieceEncodingHandler(spp_llama);
return handler(req, res);
}
if (queryModel.includes('mistral')) {
const handler = createSentencepieceEncodingHandler(spp_mistral);
return handler(req, res);
}
if (queryModel.includes('yi')) {
const handler = createSentencepieceEncodingHandler(spp_yi);
return handler(req, res);
}
if (queryModel.includes('claude')) {
const handler = createWebTokenizerEncodingHandler(claude_tokenizer);
return handler(req, res);
}
if (queryModel.includes('gemma') || queryModel.includes('gemini')) {
const handler = createSentencepieceEncodingHandler(spp_gemma);
return handler(req, res);
}
if (queryModel.includes('jamba')) {
const handler = createSentencepieceEncodingHandler(spp_jamba);
return handler(req, res);
}
if (queryModel.includes('qwen2')) {
const handler = createWebTokenizerEncodingHandler(qwen2Tokenizer);
return handler(req, res);
}
if (queryModel.includes('command-r')) {
const handler = createWebTokenizerEncodingHandler(commandRTokenizer);
return handler(req, res);
}
if (queryModel.includes('command-a')) {
const handler = createWebTokenizerEncodingHandler(commandATokenizer);
return handler(req, res);
}
if (queryModel.includes('nemo')) {
const handler = createWebTokenizerEncodingHandler(nemoTokenizer);
return handler(req, res);
}
if (queryModel.includes('deepseek')) {
const handler = createWebTokenizerEncodingHandler(deepseekTokenizer);
return handler(req, res);
}
const model = getTokenizerModel(queryModel);
const handler = createTiktokenEncodingHandler(model);
return handler(req, res);
} catch (error) {
console.error(error);
return res.send({ ids: [], count: 0, chunks: [] });
}
});
router.post('/openai/decode', async function (req, res) {
try {
const queryModel = String(req.query.model || '');
if (queryModel.includes('llama3') || queryModel.includes('llama-3')) {
const handler = createWebTokenizerDecodingHandler(llama3_tokenizer);
return handler(req, res);
}
if (queryModel.includes('llama')) {
const handler = createSentencepieceDecodingHandler(spp_llama);
return handler(req, res);
}
if (queryModel.includes('mistral')) {
const handler = createSentencepieceDecodingHandler(spp_mistral);
return handler(req, res);
}
if (queryModel.includes('yi')) {
const handler = createSentencepieceDecodingHandler(spp_yi);
return handler(req, res);
}
if (queryModel.includes('claude')) {
const handler = createWebTokenizerDecodingHandler(claude_tokenizer);
return handler(req, res);
}
if (queryModel.includes('gemma') || queryModel.includes('gemini')) {
const handler = createSentencepieceDecodingHandler(spp_gemma);
return handler(req, res);
}
if (queryModel.includes('jamba')) {
const handler = createSentencepieceDecodingHandler(spp_jamba);
return handler(req, res);
}
if (queryModel.includes('qwen2')) {
const handler = createWebTokenizerDecodingHandler(qwen2Tokenizer);
return handler(req, res);
}
if (queryModel.includes('command-r')) {
const handler = createWebTokenizerDecodingHandler(commandRTokenizer);
return handler(req, res);
}
if (queryModel.includes('command-a')) {
const handler = createWebTokenizerDecodingHandler(commandATokenizer);
return handler(req, res);
}
if (queryModel.includes('nemo')) {
const handler = createWebTokenizerDecodingHandler(nemoTokenizer);
return handler(req, res);
}
if (queryModel.includes('deepseek')) {
const handler = createWebTokenizerDecodingHandler(deepseekTokenizer);
return handler(req, res);
}
const model = getTokenizerModel(queryModel);
const handler = createTiktokenDecodingHandler(model);
return handler(req, res);
} catch (error) {
console.error(error);
return res.send({ text: '' });
}
});
router.post('/openai/count', async function (req, res) {
try {
if (!req.body) return res.sendStatus(400);
let num_tokens = 0;
const queryModel = String(req.query.model || '');
const model = getTokenizerModel(queryModel);
if (model === 'claude') {
const instance = await claude_tokenizer.get();
if (!instance) throw new Error('Failed to load the Claude tokenizer');
num_tokens = countWebTokenizerTokens(instance, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'llama3' || model === 'llama-3') {
const instance = await llama3_tokenizer.get();
if (!instance) throw new Error('Failed to load the Llama3 tokenizer');
num_tokens = countWebTokenizerTokens(instance, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'llama') {
num_tokens = await countSentencepieceArrayTokens(spp_llama, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'mistral') {
num_tokens = await countSentencepieceArrayTokens(spp_mistral, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'yi') {
num_tokens = await countSentencepieceArrayTokens(spp_yi, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'gemma' || model === 'gemini') {
num_tokens = await countSentencepieceArrayTokens(spp_gemma, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'jamba') {
num_tokens = await countSentencepieceArrayTokens(spp_jamba, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'qwen2') {
const instance = await qwen2Tokenizer.get();
if (!instance) throw new Error('Failed to load the Qwen2 tokenizer');
num_tokens = countWebTokenizerTokens(instance, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'command-r') {
const instance = await commandRTokenizer.get();
if (!instance) throw new Error('Failed to load the Command-R tokenizer');
num_tokens = countWebTokenizerTokens(instance, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'command-a') {
const instance = await commandATokenizer.get();
if (!instance) throw new Error('Failed to load the Command-A tokenizer');
num_tokens = countWebTokenizerTokens(instance, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'nemo') {
const instance = await nemoTokenizer.get();
if (!instance) throw new Error('Failed to load the Nemo tokenizer');
num_tokens = countWebTokenizerTokens(instance, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'deepseek') {
const instance = await deepseekTokenizer.get();
if (!instance) throw new Error('Failed to load the DeepSeek tokenizer');
num_tokens = countWebTokenizerTokens(instance, req.body);
return res.send({ 'token_count': num_tokens });
}
const tokensPerName = queryModel.includes('gpt-3.5-turbo-0301') ? -1 : 1;
const tokensPerMessage = queryModel.includes('gpt-3.5-turbo-0301') ? 4 : 3;
const tokensPadding = 3;
const tokenizer = getTiktokenTokenizer(model);
for (const msg of req.body) {
try {
num_tokens += tokensPerMessage;
for (const [key, value] of Object.entries(msg)) {
num_tokens += tokenizer.encode(value).length;
if (key == 'name') {
num_tokens += tokensPerName;
}
}
} catch {
console.warn('Error tokenizing message:', msg);
}
}
num_tokens += tokensPadding;
// NB: Since 2023-10-14, the GPT-3.5 Turbo 0301 model shoves in 7-9 extra tokens to every message.
// More details: https://community.openai.com/t/gpt-3-5-turbo-0301-showing-different-behavior-suddenly/431326/14
if (queryModel.includes('gpt-3.5-turbo-0301')) {
num_tokens += 9;
}
// not needed for cached tokenizers
//tokenizer.free();
res.send({ 'token_count': num_tokens });
} catch (error) {
console.error('An error counting tokens, using fallback estimation method', error);
const jsonBody = JSON.stringify(req.body);
const num_tokens = Math.ceil(jsonBody.length / CHARS_PER_TOKEN);
res.send({ 'token_count': num_tokens });
}
});
router.post('/remote/kobold/count', async function (request, response) {
if (!request.body) {
return response.sendStatus(400);
}
const text = String(request.body.text) || '';
const baseUrl = String(request.body.url);
try {
const args = {
method: 'POST',
body: JSON.stringify({ 'prompt': text }),
headers: { 'Content-Type': 'application/json' },
};
let url = String(baseUrl).replace(/\/$/, '');
url += '/extra/tokencount';
const result = await fetch(url, args);
if (!result.ok) {
console.warn(`API returned error: ${result.status} ${result.statusText}`);
return response.send({ error: true });
}
const data = await result.json();
const count = data['value'];
const ids = data['ids'] ?? [];
return response.send({ count, ids });
} catch (error) {
console.error(error);
return response.send({ error: true });
}
});
router.post('/remote/textgenerationwebui/encode', async function (request, response) {
if (!request.body) {
return response.sendStatus(400);
}
const text = String(request.body.text) || '';
const baseUrl = String(request.body.url);
const vllmModel = String(request.body.vllm_model) || '';
const aphroditeModel = String(request.body.aphrodite_model) || '';
try {
const args = {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
};
setAdditionalHeaders(request, args, baseUrl);
// Convert to string + remove trailing slash + /v1 suffix
let url = String(baseUrl).replace(/\/$/, '').replace(/\/v1$/, '');
switch (request.body.api_type) {
case TEXTGEN_TYPES.TABBY:
url += '/v1/token/encode';
args.body = JSON.stringify({ 'text': text });
break;
case TEXTGEN_TYPES.KOBOLDCPP:
url += '/api/extra/tokencount';
args.body = JSON.stringify({ 'prompt': text });
break;
case TEXTGEN_TYPES.LLAMACPP:
url += '/tokenize';
args.body = JSON.stringify({ 'content': text });
break;
case TEXTGEN_TYPES.VLLM:
url += '/tokenize';
args.body = JSON.stringify({ 'model': vllmModel, 'prompt': text });
break;
case TEXTGEN_TYPES.APHRODITE:
url += '/v1/tokenize';
args.body = JSON.stringify({ 'model': aphroditeModel, 'prompt': text });
break;
default:
url += '/v1/internal/encode';
args.body = JSON.stringify({ 'text': text });
break;
}
const result = await fetch(url, args);
if (!result.ok) {
console.warn(`API returned error: ${result.status} ${result.statusText}`);
return response.send({ error: true });
}
const data = await result.json();
const count = (data?.length ?? data?.count ?? data?.value ?? data?.tokens?.length);
const ids = (data?.tokens ?? data?.ids ?? []);
return response.send({ count, ids });
} catch (error) {
console.error(error);
return response.send({ error: true });
}
});
|