stail00016's picture
Upload 888 files
4342d5f verified
raw
history blame contribute delete
37.4 kB
import fs from 'node:fs';
import path from 'node:path';
import { Buffer } from 'node:buffer';
import express from 'express';
import { sync as writeFileAtomicSync } from 'write-file-atomic';
import { Tokenizer } from '@agnai/web-tokenizers';
import { SentencePieceProcessor } from '@agnai/sentencepiece-js';
import tiktoken from 'tiktoken';
import { convertClaudePrompt } from '../prompt-converters.js';
import { TEXTGEN_TYPES } from '../constants.js';
import { setAdditionalHeaders } from '../additional-headers.js';
import { getConfigValue, isValidUrl } from '../util.js';
/**
* @typedef { (req: import('express').Request, res: import('express').Response) => Promise<any> } TokenizationHandler
*/
/**
* @type {{[key: string]: import('tiktoken').Tiktoken}} Tokenizers cache
*/
const tokenizersCache = {};
/**
* @type {string[]}
*/
export const TEXT_COMPLETION_MODELS = [
'gpt-3.5-turbo-instruct',
'gpt-3.5-turbo-instruct-0914',
'text-davinci-003',
'text-davinci-002',
'text-davinci-001',
'text-curie-001',
'text-babbage-001',
'text-ada-001',
'code-davinci-002',
'code-davinci-001',
'code-cushman-002',
'code-cushman-001',
'text-davinci-edit-001',
'code-davinci-edit-001',
'text-embedding-ada-002',
'text-similarity-davinci-001',
'text-similarity-curie-001',
'text-similarity-babbage-001',
'text-similarity-ada-001',
'text-search-davinci-doc-001',
'text-search-curie-doc-001',
'text-search-babbage-doc-001',
'text-search-ada-doc-001',
'code-search-babbage-code-001',
'code-search-ada-code-001',
];
const CHARS_PER_TOKEN = 3.35;
const IS_DOWNLOAD_ALLOWED = getConfigValue('enableDownloadableTokenizers', true, 'boolean');
/**
* Gets a path to the tokenizer model. Downloads the model if it's a URL.
* @param {string} model Model URL or path
* @param {string|undefined} fallbackModel Fallback model path\
* @returns {Promise<string>} Path to the tokenizer model
*/
async function getPathToTokenizer(model, fallbackModel) {
if (!isValidUrl(model)) {
return model;
}
try {
const url = new URL(model);
if (!['https:', 'http:'].includes(url.protocol)) {
throw new Error('Invalid URL protocol');
}
const fileName = url.pathname.split('/').pop();
if (!fileName) {
throw new Error('Failed to extract the file name from the URL');
}
const CACHE_PATH = path.join(globalThis.DATA_ROOT, '_cache');
if (!fs.existsSync(CACHE_PATH)) {
fs.mkdirSync(CACHE_PATH, { recursive: true });
}
const cachedFile = path.join(CACHE_PATH, fileName);
if (fs.existsSync(cachedFile)) {
return cachedFile;
}
if (!IS_DOWNLOAD_ALLOWED) {
throw new Error('Downloading tokenizers is disabled, the model is not cached');
}
console.info('Downloading tokenizer model:', model);
const response = await fetch(model);
if (!response.ok) {
throw new Error(`Failed to fetch the model: ${response.status} ${response.statusText}`);
}
const arrayBuffer = await response.arrayBuffer();
writeFileAtomicSync(cachedFile, Buffer.from(arrayBuffer));
return cachedFile;
} catch (error) {
const getLastSegment = str => str?.split('/')?.pop() || '';
if (fallbackModel) {
console.error(`Could not get a tokenizer from ${getLastSegment(model)}. Reason: ${error.message}. Using a fallback model: ${getLastSegment(fallbackModel)}.`);
return fallbackModel;
}
throw new Error(`Failed to instantiate a tokenizer and fallback is not provided. Reason: ${error.message}`);
}
}
/**
* Sentencepiece tokenizer for tokenizing text.
*/
class SentencePieceTokenizer {
/**
* @type {import('@agnai/sentencepiece-js').SentencePieceProcessor} Sentencepiece tokenizer instance
*/
#instance;
/**
* @type {string} Path to the tokenizer model
*/
#model;
/**
* @type {string|undefined} Path to the fallback model
*/
#fallbackModel;
/**
* Creates a new Sentencepiece tokenizer.
* @param {string} model Path to the tokenizer model
* @param {string} [fallbackModel] Path to the fallback model
*/
constructor(model, fallbackModel) {
this.#model = model;
this.#fallbackModel = fallbackModel;
}
/**
* Gets the Sentencepiece tokenizer instance.
* @returns {Promise<import('@agnai/sentencepiece-js').SentencePieceProcessor|null>} Sentencepiece tokenizer instance
*/
async get() {
if (this.#instance) {
return this.#instance;
}
try {
const pathToModel = await getPathToTokenizer(this.#model, this.#fallbackModel);
this.#instance = new SentencePieceProcessor();
await this.#instance.load(pathToModel);
console.info('Instantiated the tokenizer for', path.parse(pathToModel).name);
return this.#instance;
} catch (error) {
console.error('Sentencepiece tokenizer failed to load: ' + this.#model, error);
return null;
}
}
}
/**
* Web tokenizer for tokenizing text.
*/
class WebTokenizer {
/**
* @type {Tokenizer} Web tokenizer instance
*/
#instance;
/**
* @type {string} Path to the tokenizer model
*/
#model;
/**
* @type {string|undefined} Path to the fallback model
*/
#fallbackModel;
/**
* Creates a new Web tokenizer.
* @param {string} model Path to the tokenizer model
* @param {string} [fallbackModel] Path to the fallback model
*/
constructor(model, fallbackModel) {
this.#model = model;
this.#fallbackModel = fallbackModel;
}
/**
* Gets the Web tokenizer instance.
* @returns {Promise<Tokenizer|null>} Web tokenizer instance
*/
async get() {
if (this.#instance) {
return this.#instance;
}
try {
const pathToModel = await getPathToTokenizer(this.#model, this.#fallbackModel);
const arrayBuffer = fs.readFileSync(pathToModel).buffer;
this.#instance = await Tokenizer.fromJSON(arrayBuffer);
console.info('Instantiated the tokenizer for', path.parse(pathToModel).name);
return this.#instance;
} catch (error) {
console.error('Web tokenizer failed to load: ' + this.#model, error);
return null;
}
}
}
const spp_llama = new SentencePieceTokenizer('src/tokenizers/llama.model');
const spp_nerd = new SentencePieceTokenizer('src/tokenizers/nerdstash.model');
const spp_nerd_v2 = new SentencePieceTokenizer('src/tokenizers/nerdstash_v2.model');
const spp_mistral = new SentencePieceTokenizer('src/tokenizers/mistral.model');
const spp_yi = new SentencePieceTokenizer('src/tokenizers/yi.model');
const spp_gemma = new SentencePieceTokenizer('src/tokenizers/gemma.model');
const spp_jamba = new SentencePieceTokenizer('src/tokenizers/jamba.model');
const claude_tokenizer = new WebTokenizer('src/tokenizers/claude.json');
const llama3_tokenizer = new WebTokenizer('src/tokenizers/llama3.json');
const commandRTokenizer = new WebTokenizer('https://github.com/SillyTavern/SillyTavern-Tokenizers/raw/main/command-r.json', 'src/tokenizers/llama3.json');
const commandATokenizer = new WebTokenizer('https://github.com/SillyTavern/SillyTavern-Tokenizers/raw/main/command-a.json', 'src/tokenizers/llama3.json');
const qwen2Tokenizer = new WebTokenizer('https://github.com/SillyTavern/SillyTavern-Tokenizers/raw/main/qwen2.json', 'src/tokenizers/llama3.json');
const nemoTokenizer = new WebTokenizer('https://github.com/SillyTavern/SillyTavern-Tokenizers/raw/main/nemo.json', 'src/tokenizers/llama3.json');
const deepseekTokenizer = new WebTokenizer('https://github.com/SillyTavern/SillyTavern-Tokenizers/raw/main/deepseek.json', 'src/tokenizers/llama3.json');
export const sentencepieceTokenizers = [
'llama',
'nerdstash',
'nerdstash_v2',
'mistral',
'yi',
'gemma',
'jamba',
];
export const webTokenizers = [
'claude',
'llama3',
'command-r',
'command-a',
'qwen2',
'nemo',
'deepseek',
];
/**
* Gets the Sentencepiece tokenizer by the model name.
* @param {string} model Sentencepiece model name
* @returns {SentencePieceTokenizer|null} Sentencepiece tokenizer
*/
export function getSentencepiceTokenizer(model) {
if (model.includes('llama')) {
return spp_llama;
}
if (model.includes('nerdstash')) {
return spp_nerd;
}
if (model.includes('mistral')) {
return spp_mistral;
}
if (model.includes('nerdstash_v2')) {
return spp_nerd_v2;
}
if (model.includes('yi')) {
return spp_yi;
}
if (model.includes('gemma')) {
return spp_gemma;
}
if (model.includes('jamba')) {
return spp_jamba;
}
return null;
}
/**
* Gets the Web tokenizer by the model name.
* @param {string} model Web tokenizer model name
* @returns {WebTokenizer|null} Web tokenizer
*/
export function getWebTokenizer(model) {
if (model.includes('llama3')) {
return llama3_tokenizer;
}
if (model.includes('claude')) {
return claude_tokenizer;
}
if (model.includes('command-r')) {
return commandRTokenizer;
}
if (model.includes('command-a')) {
return commandATokenizer;
}
if (model.includes('qwen2')) {
return qwen2Tokenizer;
}
if (model.includes('nemo')) {
return nemoTokenizer;
}
if (model.includes('deepseek')) {
return deepseekTokenizer;
}
return null;
}
/**
* Counts the token ids for the given text using the Sentencepiece tokenizer.
* @param {SentencePieceTokenizer} tokenizer Sentencepiece tokenizer
* @param {string} text Text to tokenize
* @returns { Promise<{ids: number[], count: number}> } Tokenization result
*/
async function countSentencepieceTokens(tokenizer, text) {
const instance = await tokenizer?.get();
// Fallback to strlen estimation
if (!instance) {
return {
ids: [],
count: Math.ceil(text.length / CHARS_PER_TOKEN),
};
}
let cleaned = text; // cleanText(text); <-- cleaning text can result in an incorrect tokenization
let ids = instance.encodeIds(cleaned);
return {
ids,
count: ids.length,
};
}
/**
* Counts the tokens in the given array of objects using the Sentencepiece tokenizer.
* @param {SentencePieceTokenizer} tokenizer
* @param {object[]} array Array of objects to tokenize
* @returns {Promise<number>} Number of tokens
*/
async function countSentencepieceArrayTokens(tokenizer, array) {
const jsonBody = array.flatMap(x => Object.values(x)).join('\n\n');
const result = await countSentencepieceTokens(tokenizer, jsonBody);
const num_tokens = result.count;
return num_tokens;
}
async function getTiktokenChunks(tokenizer, ids) {
const decoder = new TextDecoder();
const chunks = [];
for (let i = 0; i < ids.length; i++) {
const id = ids[i];
const chunkTextBytes = await tokenizer.decode(new Uint32Array([id]));
const chunkText = decoder.decode(chunkTextBytes);
chunks.push(chunkText);
}
return chunks;
}
/**
* Gets the token chunks for the given token IDs using the Web tokenizer.
* @param {Tokenizer} tokenizer Web tokenizer instance
* @param {number[]} ids Token IDs
* @returns {string[]} Token chunks
*/
function getWebTokenizersChunks(tokenizer, ids) {
const chunks = [];
for (let i = 0, lastProcessed = 0; i < ids.length; i++) {
const chunkIds = ids.slice(lastProcessed, i + 1);
const chunkText = tokenizer.decode(new Int32Array(chunkIds));
if (chunkText === '�') {
continue;
}
chunks.push(chunkText);
lastProcessed = i + 1;
}
return chunks;
}
/**
* Gets the tokenizer model by the model name.
* @param {string} requestModel Models to use for tokenization
* @returns {string} Tokenizer model to use
*/
export function getTokenizerModel(requestModel) {
if (requestModel === 'o1' || requestModel.includes('o1-preview') || requestModel.includes('o1-mini') || requestModel.includes('o3-mini')) {
return 'o1';
}
if (requestModel.includes('gpt-4o') || requestModel.includes('chatgpt-4o-latest')) {
return 'gpt-4o';
}
if (requestModel.includes('gpt-4.5-preview')) {
return 'gpt-4o';
}
if (requestModel.includes('gpt-4-32k')) {
return 'gpt-4-32k';
}
if (requestModel.includes('gpt-4')) {
return 'gpt-4';
}
if (requestModel.includes('gpt-3.5-turbo-0301')) {
return 'gpt-3.5-turbo-0301';
}
if (requestModel.includes('gpt-3.5-turbo')) {
return 'gpt-3.5-turbo';
}
if (TEXT_COMPLETION_MODELS.includes(requestModel)) {
return requestModel;
}
if (requestModel.includes('claude')) {
return 'claude';
}
if (requestModel.includes('llama3') || requestModel.includes('llama-3')) {
return 'llama3';
}
if (requestModel.includes('llama')) {
return 'llama';
}
if (requestModel.includes('mistral')) {
return 'mistral';
}
if (requestModel.includes('yi')) {
return 'yi';
}
if (requestModel.includes('deepseek')) {
return 'deepseek';
}
if (requestModel.includes('gemma') || requestModel.includes('gemini')) {
return 'gemma';
}
if (requestModel.includes('jamba')) {
return 'jamba';
}
if (requestModel.includes('qwen2')) {
return 'qwen2';
}
if (requestModel.includes('command-r')) {
return 'command-r';
}
if (requestModel.includes('command-a')) {
return 'command-a';
}
if (requestModel.includes('nemo')) {
return 'nemo';
}
// default
return 'gpt-3.5-turbo';
}
export function getTiktokenTokenizer(model) {
if (tokenizersCache[model]) {
return tokenizersCache[model];
}
const tokenizer = tiktoken.encoding_for_model(model);
console.info('Instantiated the tokenizer for', model);
tokenizersCache[model] = tokenizer;
return tokenizer;
}
/**
* Counts the tokens for the given messages using the WebTokenizer and Claude prompt conversion.
* @param {Tokenizer} tokenizer Web tokenizer
* @param {object[]} messages Array of messages
* @returns {number} Number of tokens
*/
export function countWebTokenizerTokens(tokenizer, messages) {
// Should be fine if we use the old conversion method instead of the messages API one i think?
const convertedPrompt = convertClaudePrompt(messages, false, '', false, false, '', false);
// Fallback to strlen estimation
if (!tokenizer) {
return Math.ceil(convertedPrompt.length / CHARS_PER_TOKEN);
}
const count = tokenizer.encode(convertedPrompt).length;
return count;
}
/**
* Creates an API handler for encoding Sentencepiece tokens.
* @param {SentencePieceTokenizer} tokenizer Sentencepiece tokenizer
* @returns {TokenizationHandler} Handler function
*/
function createSentencepieceEncodingHandler(tokenizer) {
/**
* Request handler for encoding Sentencepiece tokens.
* @param {import('express').Request} request
* @param {import('express').Response} response
*/
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const text = request.body.text || '';
const instance = await tokenizer?.get();
const { ids, count } = await countSentencepieceTokens(tokenizer, text);
const chunks = instance?.encodePieces(text);
return response.send({ ids, count, chunks });
} catch (error) {
console.error(error);
return response.send({ ids: [], count: 0, chunks: [] });
}
};
}
/**
* Creates an API handler for decoding Sentencepiece tokens.
* @param {SentencePieceTokenizer} tokenizer Sentencepiece tokenizer
* @returns {TokenizationHandler} Handler function
*/
function createSentencepieceDecodingHandler(tokenizer) {
/**
* Request handler for decoding Sentencepiece tokens.
* @param {import('express').Request} request
* @param {import('express').Response} response
*/
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const ids = request.body.ids || [];
const instance = await tokenizer?.get();
if (!instance) throw new Error('Failed to load the Sentencepiece tokenizer');
const ops = ids.map(id => instance.decodeIds([id]));
const chunks = await Promise.all(ops);
const text = chunks.join('');
return response.send({ text, chunks });
} catch (error) {
console.error(error);
return response.send({ text: '', chunks: [] });
}
};
}
/**
* Creates an API handler for encoding Tiktoken tokens.
* @param {string} modelId Tiktoken model ID
* @returns {TokenizationHandler} Handler function
*/
function createTiktokenEncodingHandler(modelId) {
/**
* Request handler for encoding Tiktoken tokens.
* @param {import('express').Request} request
* @param {import('express').Response} response
*/
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const text = request.body.text || '';
const tokenizer = getTiktokenTokenizer(modelId);
const tokens = Object.values(tokenizer.encode(text));
const chunks = await getTiktokenChunks(tokenizer, tokens);
return response.send({ ids: tokens, count: tokens.length, chunks });
} catch (error) {
console.error(error);
return response.send({ ids: [], count: 0, chunks: [] });
}
};
}
/**
* Creates an API handler for decoding Tiktoken tokens.
* @param {string} modelId Tiktoken model ID
* @returns {TokenizationHandler} Handler function
*/
function createTiktokenDecodingHandler(modelId) {
/**
* Request handler for decoding Tiktoken tokens.
* @param {import('express').Request} request
* @param {import('express').Response} response
*/
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const ids = request.body.ids || [];
const tokenizer = getTiktokenTokenizer(modelId);
const textBytes = tokenizer.decode(new Uint32Array(ids));
const text = new TextDecoder().decode(textBytes);
return response.send({ text });
} catch (error) {
console.error(error);
return response.send({ text: '' });
}
};
}
/**
* Creates an API handler for encoding WebTokenizer tokens.
* @param {WebTokenizer} tokenizer WebTokenizer instance
* @returns {TokenizationHandler} Handler function
*/
function createWebTokenizerEncodingHandler(tokenizer) {
/**
* Request handler for encoding WebTokenizer tokens.
* @param {import('express').Request} request
* @param {import('express').Response} response
*/
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const text = request.body.text || '';
const instance = await tokenizer?.get();
if (!instance) throw new Error('Failed to load the Web tokenizer');
const tokens = Array.from(instance.encode(text));
const chunks = getWebTokenizersChunks(instance, tokens);
return response.send({ ids: tokens, count: tokens.length, chunks });
} catch (error) {
console.error(error);
return response.send({ ids: [], count: 0, chunks: [] });
}
};
}
/**
* Creates an API handler for decoding WebTokenizer tokens.
* @param {WebTokenizer} tokenizer WebTokenizer instance
* @returns {TokenizationHandler} Handler function
*/
function createWebTokenizerDecodingHandler(tokenizer) {
/**
* Request handler for decoding WebTokenizer tokens.
* @param {import('express').Request} request
* @param {import('express').Response} response
* @returns {Promise<any>}
*/
return async function (request, response) {
try {
if (!request.body) {
return response.sendStatus(400);
}
const ids = request.body.ids || [];
const instance = await tokenizer?.get();
if (!instance) throw new Error('Failed to load the Web tokenizer');
const chunks = getWebTokenizersChunks(instance, ids);
const text = instance.decode(new Int32Array(ids));
return response.send({ text, chunks });
} catch (error) {
console.error(error);
return response.send({ text: '', chunks: [] });
}
};
}
export const router = express.Router();
router.post('/llama/encode', createSentencepieceEncodingHandler(spp_llama));
router.post('/nerdstash/encode', createSentencepieceEncodingHandler(spp_nerd));
router.post('/nerdstash_v2/encode', createSentencepieceEncodingHandler(spp_nerd_v2));
router.post('/mistral/encode', createSentencepieceEncodingHandler(spp_mistral));
router.post('/yi/encode', createSentencepieceEncodingHandler(spp_yi));
router.post('/gemma/encode', createSentencepieceEncodingHandler(spp_gemma));
router.post('/jamba/encode', createSentencepieceEncodingHandler(spp_jamba));
router.post('/gpt2/encode', createTiktokenEncodingHandler('gpt2'));
router.post('/claude/encode', createWebTokenizerEncodingHandler(claude_tokenizer));
router.post('/llama3/encode', createWebTokenizerEncodingHandler(llama3_tokenizer));
router.post('/qwen2/encode', createWebTokenizerEncodingHandler(qwen2Tokenizer));
router.post('/command-r/encode', createWebTokenizerEncodingHandler(commandRTokenizer));
router.post('/command-a/encode', createWebTokenizerEncodingHandler(commandATokenizer));
router.post('/nemo/encode', createWebTokenizerEncodingHandler(nemoTokenizer));
router.post('/deepseek/encode', createWebTokenizerEncodingHandler(deepseekTokenizer));
router.post('/llama/decode', createSentencepieceDecodingHandler(spp_llama));
router.post('/nerdstash/decode', createSentencepieceDecodingHandler(spp_nerd));
router.post('/nerdstash_v2/decode', createSentencepieceDecodingHandler(spp_nerd_v2));
router.post('/mistral/decode', createSentencepieceDecodingHandler(spp_mistral));
router.post('/yi/decode', createSentencepieceDecodingHandler(spp_yi));
router.post('/gemma/decode', createSentencepieceDecodingHandler(spp_gemma));
router.post('/jamba/decode', createSentencepieceDecodingHandler(spp_jamba));
router.post('/gpt2/decode', createTiktokenDecodingHandler('gpt2'));
router.post('/claude/decode', createWebTokenizerDecodingHandler(claude_tokenizer));
router.post('/llama3/decode', createWebTokenizerDecodingHandler(llama3_tokenizer));
router.post('/qwen2/decode', createWebTokenizerDecodingHandler(qwen2Tokenizer));
router.post('/command-r/decode', createWebTokenizerDecodingHandler(commandRTokenizer));
router.post('/command-a/decode', createWebTokenizerDecodingHandler(commandATokenizer));
router.post('/nemo/decode', createWebTokenizerDecodingHandler(nemoTokenizer));
router.post('/deepseek/decode', createWebTokenizerDecodingHandler(deepseekTokenizer));
router.post('/openai/encode', async function (req, res) {
try {
const queryModel = String(req.query.model || '');
if (queryModel.includes('llama3') || queryModel.includes('llama-3')) {
const handler = createWebTokenizerEncodingHandler(llama3_tokenizer);
return handler(req, res);
}
if (queryModel.includes('llama')) {
const handler = createSentencepieceEncodingHandler(spp_llama);
return handler(req, res);
}
if (queryModel.includes('mistral')) {
const handler = createSentencepieceEncodingHandler(spp_mistral);
return handler(req, res);
}
if (queryModel.includes('yi')) {
const handler = createSentencepieceEncodingHandler(spp_yi);
return handler(req, res);
}
if (queryModel.includes('claude')) {
const handler = createWebTokenizerEncodingHandler(claude_tokenizer);
return handler(req, res);
}
if (queryModel.includes('gemma') || queryModel.includes('gemini')) {
const handler = createSentencepieceEncodingHandler(spp_gemma);
return handler(req, res);
}
if (queryModel.includes('jamba')) {
const handler = createSentencepieceEncodingHandler(spp_jamba);
return handler(req, res);
}
if (queryModel.includes('qwen2')) {
const handler = createWebTokenizerEncodingHandler(qwen2Tokenizer);
return handler(req, res);
}
if (queryModel.includes('command-r')) {
const handler = createWebTokenizerEncodingHandler(commandRTokenizer);
return handler(req, res);
}
if (queryModel.includes('command-a')) {
const handler = createWebTokenizerEncodingHandler(commandATokenizer);
return handler(req, res);
}
if (queryModel.includes('nemo')) {
const handler = createWebTokenizerEncodingHandler(nemoTokenizer);
return handler(req, res);
}
if (queryModel.includes('deepseek')) {
const handler = createWebTokenizerEncodingHandler(deepseekTokenizer);
return handler(req, res);
}
const model = getTokenizerModel(queryModel);
const handler = createTiktokenEncodingHandler(model);
return handler(req, res);
} catch (error) {
console.error(error);
return res.send({ ids: [], count: 0, chunks: [] });
}
});
router.post('/openai/decode', async function (req, res) {
try {
const queryModel = String(req.query.model || '');
if (queryModel.includes('llama3') || queryModel.includes('llama-3')) {
const handler = createWebTokenizerDecodingHandler(llama3_tokenizer);
return handler(req, res);
}
if (queryModel.includes('llama')) {
const handler = createSentencepieceDecodingHandler(spp_llama);
return handler(req, res);
}
if (queryModel.includes('mistral')) {
const handler = createSentencepieceDecodingHandler(spp_mistral);
return handler(req, res);
}
if (queryModel.includes('yi')) {
const handler = createSentencepieceDecodingHandler(spp_yi);
return handler(req, res);
}
if (queryModel.includes('claude')) {
const handler = createWebTokenizerDecodingHandler(claude_tokenizer);
return handler(req, res);
}
if (queryModel.includes('gemma') || queryModel.includes('gemini')) {
const handler = createSentencepieceDecodingHandler(spp_gemma);
return handler(req, res);
}
if (queryModel.includes('jamba')) {
const handler = createSentencepieceDecodingHandler(spp_jamba);
return handler(req, res);
}
if (queryModel.includes('qwen2')) {
const handler = createWebTokenizerDecodingHandler(qwen2Tokenizer);
return handler(req, res);
}
if (queryModel.includes('command-r')) {
const handler = createWebTokenizerDecodingHandler(commandRTokenizer);
return handler(req, res);
}
if (queryModel.includes('command-a')) {
const handler = createWebTokenizerDecodingHandler(commandATokenizer);
return handler(req, res);
}
if (queryModel.includes('nemo')) {
const handler = createWebTokenizerDecodingHandler(nemoTokenizer);
return handler(req, res);
}
if (queryModel.includes('deepseek')) {
const handler = createWebTokenizerDecodingHandler(deepseekTokenizer);
return handler(req, res);
}
const model = getTokenizerModel(queryModel);
const handler = createTiktokenDecodingHandler(model);
return handler(req, res);
} catch (error) {
console.error(error);
return res.send({ text: '' });
}
});
router.post('/openai/count', async function (req, res) {
try {
if (!req.body) return res.sendStatus(400);
let num_tokens = 0;
const queryModel = String(req.query.model || '');
const model = getTokenizerModel(queryModel);
if (model === 'claude') {
const instance = await claude_tokenizer.get();
if (!instance) throw new Error('Failed to load the Claude tokenizer');
num_tokens = countWebTokenizerTokens(instance, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'llama3' || model === 'llama-3') {
const instance = await llama3_tokenizer.get();
if (!instance) throw new Error('Failed to load the Llama3 tokenizer');
num_tokens = countWebTokenizerTokens(instance, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'llama') {
num_tokens = await countSentencepieceArrayTokens(spp_llama, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'mistral') {
num_tokens = await countSentencepieceArrayTokens(spp_mistral, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'yi') {
num_tokens = await countSentencepieceArrayTokens(spp_yi, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'gemma' || model === 'gemini') {
num_tokens = await countSentencepieceArrayTokens(spp_gemma, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'jamba') {
num_tokens = await countSentencepieceArrayTokens(spp_jamba, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'qwen2') {
const instance = await qwen2Tokenizer.get();
if (!instance) throw new Error('Failed to load the Qwen2 tokenizer');
num_tokens = countWebTokenizerTokens(instance, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'command-r') {
const instance = await commandRTokenizer.get();
if (!instance) throw new Error('Failed to load the Command-R tokenizer');
num_tokens = countWebTokenizerTokens(instance, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'command-a') {
const instance = await commandATokenizer.get();
if (!instance) throw new Error('Failed to load the Command-A tokenizer');
num_tokens = countWebTokenizerTokens(instance, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'nemo') {
const instance = await nemoTokenizer.get();
if (!instance) throw new Error('Failed to load the Nemo tokenizer');
num_tokens = countWebTokenizerTokens(instance, req.body);
return res.send({ 'token_count': num_tokens });
}
if (model === 'deepseek') {
const instance = await deepseekTokenizer.get();
if (!instance) throw new Error('Failed to load the DeepSeek tokenizer');
num_tokens = countWebTokenizerTokens(instance, req.body);
return res.send({ 'token_count': num_tokens });
}
const tokensPerName = queryModel.includes('gpt-3.5-turbo-0301') ? -1 : 1;
const tokensPerMessage = queryModel.includes('gpt-3.5-turbo-0301') ? 4 : 3;
const tokensPadding = 3;
const tokenizer = getTiktokenTokenizer(model);
for (const msg of req.body) {
try {
num_tokens += tokensPerMessage;
for (const [key, value] of Object.entries(msg)) {
num_tokens += tokenizer.encode(value).length;
if (key == 'name') {
num_tokens += tokensPerName;
}
}
} catch {
console.warn('Error tokenizing message:', msg);
}
}
num_tokens += tokensPadding;
// NB: Since 2023-10-14, the GPT-3.5 Turbo 0301 model shoves in 7-9 extra tokens to every message.
// More details: https://community.openai.com/t/gpt-3-5-turbo-0301-showing-different-behavior-suddenly/431326/14
if (queryModel.includes('gpt-3.5-turbo-0301')) {
num_tokens += 9;
}
// not needed for cached tokenizers
//tokenizer.free();
res.send({ 'token_count': num_tokens });
} catch (error) {
console.error('An error counting tokens, using fallback estimation method', error);
const jsonBody = JSON.stringify(req.body);
const num_tokens = Math.ceil(jsonBody.length / CHARS_PER_TOKEN);
res.send({ 'token_count': num_tokens });
}
});
router.post('/remote/kobold/count', async function (request, response) {
if (!request.body) {
return response.sendStatus(400);
}
const text = String(request.body.text) || '';
const baseUrl = String(request.body.url);
try {
const args = {
method: 'POST',
body: JSON.stringify({ 'prompt': text }),
headers: { 'Content-Type': 'application/json' },
};
let url = String(baseUrl).replace(/\/$/, '');
url += '/extra/tokencount';
const result = await fetch(url, args);
if (!result.ok) {
console.warn(`API returned error: ${result.status} ${result.statusText}`);
return response.send({ error: true });
}
const data = await result.json();
const count = data['value'];
const ids = data['ids'] ?? [];
return response.send({ count, ids });
} catch (error) {
console.error(error);
return response.send({ error: true });
}
});
router.post('/remote/textgenerationwebui/encode', async function (request, response) {
if (!request.body) {
return response.sendStatus(400);
}
const text = String(request.body.text) || '';
const baseUrl = String(request.body.url);
const vllmModel = String(request.body.vllm_model) || '';
const aphroditeModel = String(request.body.aphrodite_model) || '';
try {
const args = {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
};
setAdditionalHeaders(request, args, baseUrl);
// Convert to string + remove trailing slash + /v1 suffix
let url = String(baseUrl).replace(/\/$/, '').replace(/\/v1$/, '');
switch (request.body.api_type) {
case TEXTGEN_TYPES.TABBY:
url += '/v1/token/encode';
args.body = JSON.stringify({ 'text': text });
break;
case TEXTGEN_TYPES.KOBOLDCPP:
url += '/api/extra/tokencount';
args.body = JSON.stringify({ 'prompt': text });
break;
case TEXTGEN_TYPES.LLAMACPP:
url += '/tokenize';
args.body = JSON.stringify({ 'content': text });
break;
case TEXTGEN_TYPES.VLLM:
url += '/tokenize';
args.body = JSON.stringify({ 'model': vllmModel, 'prompt': text });
break;
case TEXTGEN_TYPES.APHRODITE:
url += '/v1/tokenize';
args.body = JSON.stringify({ 'model': aphroditeModel, 'prompt': text });
break;
default:
url += '/v1/internal/encode';
args.body = JSON.stringify({ 'text': text });
break;
}
const result = await fetch(url, args);
if (!result.ok) {
console.warn(`API returned error: ${result.status} ${result.statusText}`);
return response.send({ error: true });
}
const data = await result.json();
const count = (data?.length ?? data?.count ?? data?.value ?? data?.tokens?.length);
const ids = (data?.tokens ?? data?.ids ?? []);
return response.send({ count, ids });
} catch (error) {
console.error(error);
return response.send({ error: true });
}
});