# Copyright 2025 Tencent InstantX Team. All rights reserved. # from PIL import Image from einops import rearrange import torch from diffusers.pipelines.flux.pipeline_flux import * from transformers import SiglipVisionModel, SiglipImageProcessor, AutoModel, AutoImageProcessor from models.attn_processor import FluxIPAttnProcessor from models.resampler import CrossLayerCrossScaleProjector from models.utils import flux_load_lora # TODO EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import FluxPipeline >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) >>> pipe.to("cuda") >>> prompt = "A cat holding a sign that says hello world" >>> # Depending on the variant being used, the pipeline call will slightly vary. >>> # Refer to the pipeline documentation for more details. >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0] >>> image.save("flux.png") ``` """ class InstantCharacterFluxPipeline(FluxPipeline): @torch.no_grad() def encode_siglip_image_emb(self, siglip_image, device, dtype): siglip_image = siglip_image.to(device, dtype=dtype) res = self.siglip_image_encoder(siglip_image, output_hidden_states=True) siglip_image_embeds = res.last_hidden_state siglip_image_shallow_embeds = torch.cat([res.hidden_states[i] for i in [7, 13, 26]], dim=1) return siglip_image_embeds, siglip_image_shallow_embeds @torch.no_grad() def encode_dinov2_image_emb(self, dinov2_image, device, dtype): dinov2_image = dinov2_image.to(device, dtype=dtype) res = self.dino_image_encoder_2(dinov2_image, output_hidden_states=True) dinov2_image_embeds = res.last_hidden_state[:, 1:] dinov2_image_shallow_embeds = torch.cat([res.hidden_states[i][:, 1:] for i in [9, 19, 29]], dim=1) return dinov2_image_embeds, dinov2_image_shallow_embeds @torch.no_grad() def encode_image_emb(self, siglip_image, device, dtype): object_image_pil = siglip_image object_image_pil_low_res = [object_image_pil.resize((384, 384))] object_image_pil_high_res = object_image_pil.resize((768, 768)) object_image_pil_high_res = [ object_image_pil_high_res.crop((0, 0, 384, 384)), object_image_pil_high_res.crop((384, 0, 768, 384)), object_image_pil_high_res.crop((0, 384, 384, 768)), object_image_pil_high_res.crop((384, 384, 768, 768)), ] nb_split_image = len(object_image_pil_high_res) siglip_image_embeds = self.encode_siglip_image_emb( self.siglip_image_processor(images=object_image_pil_low_res, return_tensors="pt").pixel_values, device, dtype ) dinov2_image_embeds = self.encode_dinov2_image_emb( self.dino_image_processor_2(images=object_image_pil_low_res, return_tensors="pt").pixel_values, device, dtype ) image_embeds_low_res_deep = torch.cat([siglip_image_embeds[0], dinov2_image_embeds[0]], dim=2) image_embeds_low_res_shallow = torch.cat([siglip_image_embeds[1], dinov2_image_embeds[1]], dim=2) siglip_image_high_res = self.siglip_image_processor(images=object_image_pil_high_res, return_tensors="pt").pixel_values siglip_image_high_res = siglip_image_high_res[None] siglip_image_high_res = rearrange(siglip_image_high_res, 'b n c h w -> (b n) c h w') siglip_image_high_res_embeds = self.encode_siglip_image_emb(siglip_image_high_res, device, dtype) siglip_image_high_res_deep = rearrange(siglip_image_high_res_embeds[0], '(b n) l c -> b (n l) c', n=nb_split_image) dinov2_image_high_res = self.dino_image_processor_2(images=object_image_pil_high_res, return_tensors="pt").pixel_values dinov2_image_high_res = dinov2_image_high_res[None] dinov2_image_high_res = rearrange(dinov2_image_high_res, 'b n c h w -> (b n) c h w') dinov2_image_high_res_embeds = self.encode_dinov2_image_emb(dinov2_image_high_res, device, dtype) dinov2_image_high_res_deep = rearrange(dinov2_image_high_res_embeds[0], '(b n) l c -> b (n l) c', n=nb_split_image) image_embeds_high_res_deep = torch.cat([siglip_image_high_res_deep, dinov2_image_high_res_deep], dim=2) image_embeds_dict = dict( image_embeds_low_res_shallow=image_embeds_low_res_shallow, image_embeds_low_res_deep=image_embeds_low_res_deep, image_embeds_high_res_deep=image_embeds_high_res_deep, ) return image_embeds_dict @torch.no_grad() def init_ccp_and_attn_processor(self, *args, **kwargs): subject_ip_adapter_path = kwargs['subject_ip_adapter_path'] nb_token = kwargs['nb_token'] state_dict = torch.load(subject_ip_adapter_path, map_location="cpu") device, dtype = self.transformer.device, self.transformer.dtype print(f"=> init attn processor") attn_procs = {} for idx_attn, (name, v) in enumerate(self.transformer.attn_processors.items()): attn_procs[name] = FluxIPAttnProcessor( hidden_size=self.transformer.config.attention_head_dim * self.transformer.config.num_attention_heads, ip_hidden_states_dim=self.text_encoder_2.config.d_model, ).to(device, dtype=dtype) self.transformer.set_attn_processor(attn_procs) tmp_ip_layers = torch.nn.ModuleList(self.transformer.attn_processors.values()) key_name = tmp_ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False) print(f"=> load attn processor: {key_name}") print(f"=> init project") image_proj_model = CrossLayerCrossScaleProjector( inner_dim=1152 + 1536, num_attention_heads=42, attention_head_dim=64, cross_attention_dim=1152 + 1536, num_layers=4, dim=1280, depth=4, dim_head=64, heads=20, num_queries=nb_token, embedding_dim=1152 + 1536, output_dim=4096, ff_mult=4, timestep_in_dim=320, timestep_flip_sin_to_cos=True, timestep_freq_shift=0, ) image_proj_model.eval() image_proj_model.to(device, dtype=dtype) key_name = image_proj_model.load_state_dict(state_dict["image_proj"], strict=False) print(f"=> load project: {key_name}") self.subject_image_proj_model = image_proj_model @torch.no_grad() def init_adapter( self, image_encoder_path=None, image_encoder_2_path=None, subject_ipadapter_cfg=None, ): device, dtype = self.transformer.device, self.transformer.dtype # image encoder print(f"=> loading image_encoder_1: {image_encoder_path}") image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path) image_processor = SiglipImageProcessor.from_pretrained(image_encoder_path) image_encoder.eval() image_encoder.to(device, dtype=dtype) self.siglip_image_encoder = image_encoder self.siglip_image_processor = image_processor # image encoder 2 print(f"=> loading image_encoder_2: {image_encoder_2_path}") image_encoder_2 = AutoModel.from_pretrained(image_encoder_2_path) image_processor_2 = AutoImageProcessor.from_pretrained(image_encoder_2_path) image_encoder_2.eval() image_encoder_2.to(device, dtype=dtype) image_processor_2.crop_size = dict(height=384, width=384) image_processor_2.size = dict(shortest_edge=384) self.dino_image_encoder_2 = image_encoder_2 self.dino_image_processor_2 = image_processor_2 # ccp and adapter self.init_ccp_and_attn_processor(**subject_ipadapter_cfg) @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, negative_prompt: Union[str, List[str]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, true_cfg_scale: float = 1.0, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 28, sigmas: Optional[List[float]] = None, guidance_scale: float = 3.5, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, negative_ip_adapter_image: Optional[PipelineImageInput] = None, negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, joint_attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 512, subject_image: Image.Image = None, subject_scale: float = 0.8, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is will be used instead height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. This is set to 1024 by default for the best results. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. This is set to 1024 by default for the best results. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 7.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. negative_ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. Examples: Returns: [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, height, width, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length, ) self._guidance_scale = guidance_scale self._joint_attention_kwargs = joint_attention_kwargs self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device dtype = self.transformer.dtype lora_scale = ( self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None ) do_true_cfg = true_cfg_scale > 1 and negative_prompt is not None ( prompt_embeds, pooled_prompt_embeds, text_ids, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale, ) if do_true_cfg: ( negative_prompt_embeds, negative_pooled_prompt_embeds, _, ) = self.encode_prompt( prompt=negative_prompt, prompt_2=negative_prompt_2, prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=negative_pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale, ) # 3.1 Prepare subject emb if subject_image is not None: subject_image = subject_image.resize((max(subject_image.size), max(subject_image.size))) subject_image_embeds_dict = self.encode_image_emb(subject_image, device, dtype) # 4. Prepare latent variables num_channels_latents = self.transformer.config.in_channels // 4 latents, latent_image_ids = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 5. Prepare timesteps sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas image_seq_len = latents.shape[1] mu = calculate_shift( image_seq_len, self.scheduler.config.base_image_seq_len, self.scheduler.config.max_image_seq_len, self.scheduler.config.base_shift, self.scheduler.config.max_shift, ) timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, sigmas=sigmas, mu=mu, ) num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) self._num_timesteps = len(timesteps) # handle guidance if self.transformer.config.guidance_embeds: guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) guidance = guidance.expand(latents.shape[0]) else: guidance = None if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None ): negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None ): ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) if self.joint_attention_kwargs is None: self._joint_attention_kwargs = {} image_embeds = None negative_image_embeds = None if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, ) if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: negative_image_embeds = self.prepare_ip_adapter_image_embeds( negative_ip_adapter_image, negative_ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, ) # 6. Denoising loop with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue if image_embeds is not None: self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latents.shape[0]).to(latents.dtype) # subject adapter if subject_image is not None: subject_image_prompt_embeds = self.subject_image_proj_model( low_res_shallow=subject_image_embeds_dict['image_embeds_low_res_shallow'], low_res_deep=subject_image_embeds_dict['image_embeds_low_res_deep'], high_res_deep=subject_image_embeds_dict['image_embeds_high_res_deep'], timesteps=timestep.to(dtype=latents.dtype), need_temb=True )[0] self._joint_attention_kwargs['emb_dict'] = dict( length_encoder_hidden_states=prompt_embeds.shape[1] ) self._joint_attention_kwargs['subject_emb_dict'] = dict( ip_hidden_states=subject_image_prompt_embeds, scale=subject_scale, ) noise_pred = self.transformer( hidden_states=latents, timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, )[0] if do_true_cfg: if negative_image_embeds is not None: self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds neg_noise_pred = self.transformer( hidden_states=latents, timestep=timestep / 1000, guidance=guidance, pooled_projections=negative_pooled_prompt_embeds, encoder_hidden_states=negative_prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, )[0] noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if output_type == "latent": image = latents else: latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor image = self.vae.decode(latents, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return FluxPipelineOutput(images=image) def with_style_lora(self, lora_file_path, lora_weight=1.0, trigger='', *args, **kwargs): flux_load_lora(self, lora_file_path, lora_weight) kwargs['prompt'] = f"{trigger}, {kwargs['prompt']}" res = self.__call__(*args, **kwargs) flux_load_lora(self, lora_file_path, -lora_weight) return res