taesiri's picture
backup
04e8185
raw
history blame
11.1 kB
import gradio as gr
import base64
import json
import os
import shutil
import uuid
import glob
from huggingface_hub import CommitScheduler, HfApi, snapshot_download
from pathlib import Path
import git
from datasets import Dataset, Features, Value, Sequence, Image as ImageFeature
import threading
import time
from utils import process_and_push_dataset
from datasets import load_dataset
api = HfApi(token=os.environ["HF_TOKEN"])
VALID_DATASET = load_dataset("taesiri/IERv2-Subset", split="train")
VALID_DATASET_POST_IDS = (
load_dataset("taesiri/IERv2-Subset", split="train", columns=["post_id"])
.to_pandas()["post_id"]
.tolist()
)
POST_ID_TO_ID_MAP = {post_id: idx for idx, post_id in enumerate(VALID_DATASET_POST_IDS)}
DATASET_REPO = "taesiri/AIImageEditingResults_Intemediate"
FINAL_DATASET_REPO = "taesiri/AIImageEditingResults"
# Download existing data from hub
def sync_with_hub():
"""
Synchronize local data with the hub by cloning the dataset repo
"""
print("Starting sync with hub...")
data_dir = Path("./data")
if data_dir.exists():
# Backup existing data
backup_dir = Path("./data_backup")
if backup_dir.exists():
shutil.rmtree(backup_dir)
shutil.copytree(data_dir, backup_dir)
# Clone/pull latest data from hub
repo_url = f"https://huggingface.co/datasets/{DATASET_REPO}"
hub_data_dir = Path("hub_data")
if hub_data_dir.exists():
# If repo exists, do a git pull
print("Pulling latest changes...")
repo = git.Repo(hub_data_dir)
origin = repo.remotes.origin
origin.pull()
else:
# Clone the repo
print("Cloning repository...")
git.Repo.clone_from(repo_url, hub_data_dir)
# Merge hub data with local data
hub_data_source = hub_data_dir / "data"
if hub_data_source.exists():
# Create data dir if it doesn't exist
data_dir.mkdir(exist_ok=True)
# Copy files from hub
for item in hub_data_source.glob("*"):
if item.is_dir():
dest = data_dir / item.name
if not dest.exists(): # Only copy if doesn't exist locally
shutil.copytree(item, dest)
# Clean up cloned repo
if hub_data_dir.exists():
shutil.rmtree(hub_data_dir)
print("Finished syncing with hub!")
scheduler = CommitScheduler(
repo_id=DATASET_REPO,
repo_type="dataset",
folder_path="./data",
path_in_repo="data",
every=1,
)
def load_question_data(question_id):
"""
Load a specific question's data
Returns a tuple of all form fields
"""
if not question_id:
return [None] * 11 # Reduced number of fields
# Extract the ID part before the colon from the dropdown selection
question_id = (
question_id.split(":")[0].strip() if ":" in question_id else question_id
)
json_path = os.path.join("./data", question_id, "question.json")
if not os.path.exists(json_path):
print(f"Question file not found: {json_path}")
return [None] * 11
try:
with open(json_path, "r", encoding="utf-8") as f:
data = json.loads(f.read().strip())
# Load images
def load_image(image_path):
if not image_path:
return None
full_path = os.path.join(
"./data", question_id, os.path.basename(image_path)
)
return full_path if os.path.exists(full_path) else None
question_images = data.get("question_images", [])
rationale_images = data.get("rationale_images", [])
return [
(
",".join(data["question_categories"])
if isinstance(data["question_categories"], list)
else data["question_categories"]
),
data["question"],
data["final_answer"],
data.get("rationale_text", ""),
load_image(question_images[0] if question_images else None),
load_image(question_images[1] if len(question_images) > 1 else None),
load_image(question_images[2] if len(question_images) > 2 else None),
load_image(question_images[3] if len(question_images) > 3 else None),
load_image(rationale_images[0] if rationale_images else None),
load_image(rationale_images[1] if len(rationale_images) > 1 else None),
question_id,
]
except Exception as e:
print(f"Error loading question {question_id}: {str(e)}")
return [None] * 11
def load_post_image(post_id):
if not post_id:
return [None] * 21 # source image + 10 pairs of (image, text)
idx = POST_ID_TO_ID_MAP[post_id]
source_image = VALID_DATASET[idx]["image"]
# Load existing responses if any
post_folder = os.path.join("./data", str(post_id))
metadata_path = os.path.join(post_folder, "metadata.json")
if os.path.exists(metadata_path):
with open(metadata_path, "r") as f:
metadata = json.load(f)
# Initialize response data
responses = [(None, "")] * 10
# Fill in existing responses
for response in metadata["responses"]:
idx = response["response_id"]
if idx < 10: # Ensure we don't exceed our UI limit
image_path = os.path.join(post_folder, response["image_path"])
responses[idx] = (image_path, response["answer_text"])
# Flatten responses for output
flat_responses = [item for pair in responses for item in pair]
return [source_image] + flat_responses
# If no existing responses, return source image and empty responses
return [source_image] + [None] * 20
def generate_json_files(source_image, responses, post_id):
"""
Save the source image and multiple responses to the data directory
Args:
source_image: Path to the source image
responses: List of (image, answer) tuples
post_id: The post ID from the dataset
"""
# Create parent data folder if it doesn't exist
parent_data_folder = "./data"
os.makedirs(parent_data_folder, exist_ok=True)
# Create/clear post_id folder
post_folder = os.path.join(parent_data_folder, str(post_id))
if os.path.exists(post_folder):
shutil.rmtree(post_folder)
os.makedirs(post_folder)
# Save source image
source_image_path = os.path.join(post_folder, "source_image.png")
if isinstance(source_image, str):
shutil.copy2(source_image, source_image_path)
else:
gr.processing_utils.save_image(source_image, source_image_path)
# Create responses data
responses_data = []
for idx, (response_image, answer_text) in enumerate(responses):
if response_image and answer_text: # Only process if both image and text exist
response_folder = os.path.join(post_folder, f"response_{idx}")
os.makedirs(response_folder)
# Save response image
response_image_path = os.path.join(response_folder, "response_image.png")
if isinstance(response_image, str):
shutil.copy2(response_image, response_image_path)
else:
gr.processing_utils.save_image(response_image, response_image_path)
# Add to responses data
responses_data.append(
{
"response_id": idx,
"answer_text": answer_text,
"image_path": f"response_{idx}/response_image.png",
}
)
# Create metadata JSON
metadata = {
"post_id": post_id,
"source_image": "source_image.png",
"responses": responses_data,
}
# Save metadata
with open(os.path.join(post_folder, "metadata.json"), "w", encoding="utf-8") as f:
json.dump(metadata, f, ensure_ascii=False, indent=2)
return post_folder
# Build the Gradio app
with gr.Blocks() as demo:
gr.Markdown("# Image Response Collector")
# Source image selection at the top
with gr.Column():
post_id_dropdown = gr.Dropdown(
label="Select Post ID to Load Image",
choices=VALID_DATASET_POST_IDS,
type="value",
allow_custom_value=False,
)
source_image = gr.Image(label="Source Image", type="filepath")
# Responses in tabs
with gr.Tabs() as response_tabs:
responses = []
for i in range(10):
with gr.Tab(f"Response {i+1}"):
img = gr.Image(label=f"Response Image {i+1}", type="filepath")
txt = gr.Textbox(label=f"Model Name {i+1}", lines=2)
responses.append((img, txt))
with gr.Row():
submit_btn = gr.Button("Submit All Responses")
clear_btn = gr.Button("Clear Form")
def submit_responses(source_img, post_id, *response_data):
if not source_img:
gr.Warning("Please select a source image first!")
return
if not post_id:
gr.Warning("Please select a post ID first!")
return
# Convert flat response_data into pairs of (image, text)
response_pairs = list(zip(response_data[::2], response_data[1::2]))
# Filter out empty responses
valid_responses = [
(img, txt) for img, txt in response_pairs if img is not None and txt
]
if not valid_responses:
gr.Warning("Please provide at least one response (image + text)!")
return
generate_json_files(source_img, valid_responses, post_id)
gr.Info("Responses saved successfully! 🎉")
def clear_form():
outputs = [None] * (1 + 20) # 1 source image + 10 pairs of (image, text)
return outputs
# Connect components
post_id_dropdown.change(
fn=load_post_image,
inputs=[post_id_dropdown],
outputs=[source_image] + [comp for pair in responses for comp in pair],
)
submit_inputs = [source_image, post_id_dropdown] + [
comp for pair in responses for comp in pair
]
submit_btn.click(fn=submit_responses, inputs=submit_inputs)
clear_outputs = [source_image] + [comp for pair in responses for comp in pair]
clear_btn.click(fn=clear_form, outputs=clear_outputs)
def process_thread():
while True:
try:
pass
# process_and_push_dataset(
# "./data",
# FINAL_DATASET_REPO,
# token=os.environ["HF_TOKEN"],
# private=True,
# )
except Exception as e:
print(f"Error in process thread: {e}")
time.sleep(120) # Sleep for 2 minutes
if __name__ == "__main__":
print("Initializing app...")
sync_with_hub() # Sync before launching the app
print("Starting Gradio interface...")
# Start the processing thread when the app starts
processing_thread = threading.Thread(target=process_thread, daemon=True)
processing_thread.start()
demo.launch()