import cv2 from tensorflow.keras.models import load_model import matplotlib.pyplot as plt import numpy as np from PIL import Image import gradio as gr def recog(img): model = load_model('hack36_2.h5') img_array = np.asarray(img) clone = img_array.copy() clone_resized = cv2.resize(clone, (64,64)) img_array=clone_resized/255 img_final = np.expand_dims(img_array, axis=0) prediction = model.predict(img_final).tolist()[0] alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'space', 'space', 'space'] return {alphabet[i]: prediction[i] for i in range(29)} title = "ASL Fingerspelling Recognition" desc = "" input = gr.inputs.Image(type="pil", source="webcam") # output = gr.outputs.HTML(label="") output = gr.outputs.Label(num_top_classes=5) # output = "text" examples = [ ["B_test.jpg"], ["C_test.jpg"], ["Y_test.jpg"] ] iface = gr.Interface( fn=recog, title=title, description=desc, examples=examples, inputs=input, outputs=output ) iface.launch()