Spaces:
Sleeping
Sleeping
File size: 4,864 Bytes
d7d2bc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import argparse
import yfinance as yf
import numpy as np
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
import os
from datetime import datetime, timedelta
import pandas as pd
#用法
# python3 app_Time_sandwich.py --ticker AAPL --days 10 --period 6mo
# python3 app_Time_sandwich.py --ticker AAPL --days 10 --period 6mo --cutoff 2025-03-15 --compare real
# ==== Sandwich 模型結構 ====
class SandwichModel(nn.Module):
def __init__(self, input_dim, hidden_dim=64, output_dim=5):
super().__init__()
self.encoder1 = nn.Linear(input_dim, hidden_dim)
self.encoder2 = nn.Linear(hidden_dim, hidden_dim)
self.lstm = nn.LSTM(hidden_dim, hidden_dim, batch_first=True)
self.decoder1 = nn.Linear(hidden_dim, hidden_dim)
self.decoder2 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = torch.relu(self.encoder1(x))
x = torch.relu(self.encoder2(x))
out, _ = self.lstm(x)
out = torch.relu(self.decoder1(out[:, -1, :]))
return self.decoder2(out)
# ==== 資料處理 ====
def fetch_data(ticker, period="3mo"):
df = yf.download(ticker, period=period)[['Open','High','Low','Close','Volume']].dropna()
df.index = df.index.tz_localize(None)
return df
def prepare_data(df, window_size=10, forecast_days=5):
X, Y = [], []
for i in range(len(df) - window_size - forecast_days):
X.append(df.iloc[i:i+window_size].values)
Y.append(df['Close'].iloc[i+window_size:i+window_size+forecast_days].values)
return np.array(X), np.array(Y)
# ==== 主流程 ====
def main(ticker, forecast_days, period, cutoff_str, compare_real):
print(f"📈 預測 {ticker} 未來 {forecast_days} 天股價(使用 Sandwich 模型)")
df_all = fetch_data(ticker, period)
if cutoff_str:
cutoff = datetime.strptime(cutoff_str, "%Y-%m-%d")
df_train = df_all[df_all.index < cutoff]
df_test = df_all[df_all.index >= cutoff]
else:
cutoff = df_all.index[-1]
df_train = df_all
df_test = pd.DataFrame()
X, Y = prepare_data(df_train, window_size=10, forecast_days=forecast_days)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X.reshape(-1, X.shape[-1])).reshape(X.shape)
X_tensor = torch.tensor(X_scaled, dtype=torch.float32)
Y_tensor = torch.tensor(Y, dtype=torch.float32)
if Y_tensor.ndim == 3:
Y_tensor = Y_tensor.squeeze(-1)
model = SandwichModel(input_dim=X.shape[2], output_dim=forecast_days)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
loss_fn = nn.MSELoss()
print("🧠 開始訓練...")
for epoch in range(200):
model.train()
pred = model(X_tensor)
loss = loss_fn(pred, Y_tensor)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 50 == 0:
print(f"Epoch {epoch} | Loss: {loss.item():.4f}")
# 預測未來
latest = df_train.iloc[-10:].values.reshape(1, 10, -1)
latest_scaled = scaler.transform(latest.reshape(-1, latest.shape[-1])).reshape(1, 10, -1)
latest_tensor = torch.tensor(latest_scaled, dtype=torch.float32)
model.eval()
with torch.no_grad():
forecast = model(latest_tensor).numpy()[0]
forecast_dates = [cutoff + timedelta(days=i+1) for i in range(forecast_days)]
# 畫圖
plt.figure(figsize=(10, 5))
plt.plot(forecast_dates, forecast, label='Sandwich', color='teal')
if compare_real and not df_test.empty:
real_segment = df_test['Close'].iloc[:forecast_days]
if len(real_segment) == forecast_days:
plt.plot(real_segment.index, real_segment.values, label='Real', color='black', linestyle='--')
plt.title(f"{ticker} Forecast for Next {forecast_days} Days (Sandwich)")
plt.xlabel("Date")
plt.ylabel("Predicted Close Price")
plt.legend()
plt.grid(True)
filename = f"sandwich_{ticker.lower()}_forecast.png"
if "DISPLAY" in os.environ:
plt.show()
else:
plt.savefig(filename)
print(f"📊 圖已儲存為 {filename}")
# ==== CLI ====
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Sandwich-based stock price forecast with backtest support")
parser.add_argument('--ticker', type=str, default='TSLA')
parser.add_argument('--days', type=int, default=5)
parser.add_argument('--period', type=str, default='3mo')
parser.add_argument('--cutoff', type=str, default='', help='模擬預測的起始日,如 2025-03-15')
parser.add_argument('--compare', type=str, default='', help='輸入 "real" 顯示真實價格線')
args = parser.parse_args()
compare_real = args.compare.lower() == 'real'
main(args.ticker, args.days, args.period, args.cutoff, compare_real) |