File size: 13,039 Bytes
d7d2bc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

#!/usr/bin/env python3
"""
app_series_others.py
--------------------------------------------------------------------
「依樣畫葫蘆」版:把 Qlib 內建的 6 個“其他”模型(gats、sfm、
tabnet、add、igmtf、hist)拉進同一支腳本,比照
`app_series_Attention.py` 的流程:
    1. 下載歷史股價 (yfinance)
    2. 準備滑動視窗資料
    3. 逐一訓練並預測未來 N 天收盤價
    4. 畫圖 + 儲存 PNG / CSV
--------------------------------------------------------------------
**重點差異**
* 這些模型各自的 `fit / predict` 介面不完全相同;為了簡化,
  這裡用 `importlib` 動態載入,再嘗試:
      a. 若類別有 `.fit()`,就呼叫它(DatasetH 版)
      b. 否則 fallback 到手動 train loop(跟 attention 版相同)
* 若模型屬於「跨樣本」類(TabNet / SFM / ADD / HIST),
  `prepare_data_tabular()` 會把時序資料展平成單筆特徵;
  其餘(GATS / IGMTF)依然使用滑窗方式。
--------------------------------------------------------------------
**使用方法**
$ python3 app_series_others.py \\
      --ticker TSLA \\
      --days   7      # 預測天數                       \\
      --period 1y     # 訓練資料期間(yfinance 標準字串)\\
      --cutoff 2025-03-20   # 訓練到哪一天              \\
      --compare real  # 是否畫出真實線(real / none)
# 例:用一年資料訓練,預測 7 天
python3 app_series_others.py --ticker TSLA --period 1y --days 7 \
                             --cutoff 2025-03-20 --compare real

"""

import argparse, importlib, os, sys, warnings, math
from pathlib import Path
from datetime import datetime, timedelta

import yfinance as yf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader

# --------------------- 參數 ---------------------
def get_args():
    p = argparse.ArgumentParser()
    p.add_argument('--ticker', type=str, default='TSLA')
    p.add_argument('--period', type=str, default='3mo',
                   help='yfinance period, e.g. 6mo / 1y / 5y / max')
    p.add_argument('--days', type=int, default=7,
                   help='forecast horizon')
    p.add_argument('--cutoff', type=str, default=None,
                   help='yyyy-mm-dd ; 若為 None 取資料最後一天')
    p.add_argument('--compare', type=str, default='real',
                   choices=['real', 'none'])
    p.add_argument('--window', type=int, default=10,
                   help='滑動視窗長度 (僅對 TS 類模型適用)')
    p.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu')
    return p.parse_args()


# --------------------- 下載 + 前處理 ---------------------
def fetch_data(ticker, period, cutoff):
    df = yf.download(ticker, period=period, auto_adjust=True)
    if cutoff is not None:
        df = df[df.index <= cutoff]
    return df


def prepare_data_ts(df, window):
    # 把 OHLCV 5 欄做成 (N, window, 5) tensor
    feat_cols = ['Open', 'High', 'Low', 'Close', 'Volume']
    data = df[feat_cols].values
    X, y = [], []
    for i in range(len(data) - window - 1):
        X.append(data[i:i+window])
        y.append(data[i+window, 3])      # 下一天收盤價
    X = torch.tensor(np.array(X), dtype=torch.float32)
    y = torch.tensor(np.array(y), dtype=torch.float32)
    return X, y


def prepare_data_tabular(df, lookback=30):
    """
    把最近 lookback 天的統計特徵展平成單筆向量,
    給 TabNet / SFM / ADD / HIST 這類“橫斷面”模型。
    """
    feat_cols = ['Open', 'High', 'Low', 'Close', 'Volume']
    feats, labels = [], []
    for i in range(lookback, len(df)-1):
        window = df.iloc[i-lookback:i]
        f = []
        for col in feat_cols:
            series = window[col]
            f += [series.mean(), series.std(), series.min(), series.max(),
                  series.iloc[-1] - series.iloc[0]]   # delta
        feats.append(f)
        labels.append(df.iloc[i, 3])       # 當天 close
    X = torch.tensor(np.array(feats), dtype=torch.float32)
    y = torch.tensor(np.array(labels), dtype=torch.float32)
    return X, y


# --------------------- 動態載入模型 ---------------------
MODEL_SPECS = [
    # (module_path, [candidate class names])
    ('qlib.contrib.model.pytorch_gats',  ['GATSModel', 'GATS']),
    ('qlib.contrib.model.pytorch_sfm',   ['SFMModel',  'SFM']),
    ('qlib.contrib.model.pytorch_tabnet',['TabNet']),
    ('qlib.contrib.model.pytorch_add',   ['ADDModel']),
    ('qlib.contrib.model.pytorch_igmtf', ['IGMTF']),
    ('qlib.contrib.model.pytorch_hist',  ['HIST'])
]


def load_model(module_path, class_list):
    try:
        module = importlib.import_module(module_path)
        for cls in class_list:
            if hasattr(module, cls):
                return getattr(module, cls)
        warnings.warn(f'{module_path} 裏找不到 {class_list}')
        return None
    except ImportError as e:
        warnings.warn(f'無法 import {module_path}{e}')
        return None


# --------------------- 通用 train/predict ---------------------
def train_predict_ts(model_cls, X, y, X_last, device='cpu', epochs=200, lr=1e-3):
    model = model_cls(d_feat=X.shape[2], output_dim=1)
    net   = model.model            if hasattr(model, 'model') else model
    net.to(device)
    ds = TensorDataset(X.to(device), y.to(device))
    dl = DataLoader(ds, batch_size=32, shuffle=True)
    opt = torch.optim.Adam(net.parameters(), lr=lr)
    loss_fn = nn.MSELoss()

    net.train()
    for _ in range(epochs):
        for xb, yb in dl:
            opt.zero_grad()
            pred = net(xb).squeeze()
            loss = loss_fn(pred, yb)
            loss.backward()
            opt.step()

    net.eval()
    with torch.no_grad():
        pred_future = net(X_last.to(device)).squeeze().item()
    return pred_future


def train_predict_tab(model_cls, X, y, X_last, device='cpu',
                      epochs=200, lr=1e-3):
    import inspect
    sig = inspect.signature(model_cls.__init__)
    kw = {}
    if 'd_feat'      in sig.parameters: kw['d_feat']      = X.shape[1]
    if 'feature_dim' in sig.parameters: kw['feature_dim'] = X.shape[1]
    if 'input_dim'   in sig.parameters: kw['input_dim']   = X.shape[1]
    if 'field_dim'   in sig.parameters: kw['field_dim']   = X.shape[1]
    if 'embed_dim'   in sig.parameters: kw['embed_dim']   = 16
    if 'output_dim'  in sig.parameters: kw['output_dim']  = 1
    if 'target_dim'  in sig.parameters: kw['target_dim']  = 1

    model = model_cls(**kw)

    # ---- 嘗試官方 fit/predict,失敗就 fallback ----
    if hasattr(model, 'fit') and hasattr(model, 'predict'):
        try:
            model.fit(X.numpy(), y.numpy())
            return float(model.predict(X_last.numpy()).item())
        except Exception as e:
            print(f'⚠️  {model_cls.__name__}.fit() 失敗,改用手動訓練 loop:{e}')

    # ----------- 手動 train loop ---------------
    net = model.model if hasattr(model, 'model') else model
    net.to(device)
    ds = TensorDataset(X.to(device), y.to(device))
    dl = DataLoader(ds, batch_size=32, shuffle=True)
    opt = torch.optim.Adam(net.parameters(), lr=lr)
    loss_fn = nn.MSELoss()
    net.train()
    for _ in range(epochs):
        for xb, yb in dl:
            opt.zero_grad()
            loss_fn(net(xb).squeeze(), yb).backward()
            opt.step()
    net.eval()
    with torch.no_grad():
        return net(X_last.to(device)).squeeze().item()
    return pred_future

def forecast_others(ticker, forecast_days=7, period="1y", cutoff=None, compare_real=False):
    df = fetch_data(ticker, period, cutoff)
    if df is None or df.empty:
        raise ValueError('❌ 無資料!檢查 ticker / 期間設定')

    # 分割訓練與真實資料
    if compare_real:
        real_future = df['Close'].iloc[-forecast_days:]
        df_hist = df.iloc[:-forecast_days]
    else:
        real_future = None
        df_hist = df

    if df_hist is None or df_hist.empty or len(df_hist) < 11:
        raise ValueError(f"{ticker} 訓練資料不足,無法進行預測。")

    X_ts, y_ts = prepare_data_ts(df_hist, window=10)
    X_last_ts = torch.tensor(df_hist[['Open', 'High', 'Low', 'Close', 'Volume']].values[-10:],
                             dtype=torch.float32).unsqueeze(0)

    X_tab, y_tab = prepare_data_tabular(df_hist, lookback=30)
    last_feats = prepare_data_tabular(df_hist, lookback=30)[0][-1].unsqueeze(0)

    if X_ts.size(0) == 0 or y_ts.size(0) == 0 or X_tab.size(0) == 0 or y_tab.size(0) == 0:
        raise ValueError(f"{ticker} 訓練資料切片後無有效樣本,請嘗試更長的 period 或不同的 cutoff。")

    predictions = {}
    for mod_path, cls_list in MODEL_SPECS:
        ModelClass = load_model(mod_path, cls_list)
        if ModelClass is None:
            continue

        model_name = ModelClass.__name__
        print(f'🔍 Training {model_name} ...')
        try:
            if any(tag in mod_path for tag in ['gats', 'igmtf']):
                pred = train_predict_ts(ModelClass, X_ts, y_ts, X_last_ts)
            else:
                pred = train_predict_tab(ModelClass, X_tab, y_tab, last_feats)
        except Exception as e:
            print(f'⚠️ 跳過 {model_name}{e}')
            continue

        predictions[model_name.upper()] = pred

    # 畫圖與表格
    future_dates = pd.date_range(df_hist.index[-1] + timedelta(days=1), periods=forecast_days, freq='B')
    df_out = pd.DataFrame(index=future_dates)

    fig, ax = plt.subplots(figsize=(10, 5))
    for name, value in predictions.items():
        df_out[name] = [value] * forecast_days
        ax.plot(future_dates, [value] * forecast_days, label=name)

    if compare_real and real_future is not None:
        df_out["Real"] = real_future.values
        ax.plot(real_future.index, real_future.values, 'k--', label='Real')

    ax.set_title(f"{ticker} Forecast Comparison (Other Models)")
    ax.set_xlabel('Date')
    ax.set_ylabel('Close Price')
    ax.legend()
    ax.grid(True)
    fig.autofmt_xdate()

    return fig, df_out

# --------------------- 主流程 ---------------------
def main():
    args = get_args()
    df = fetch_data(args.ticker, args.period, args.cutoff)
    if df.empty:
        print('❌ 無資料!檢查 ticker / 期間設定')
        sys.exit(1)

    # 真實未來 close(for compare)
    if args.compare == 'real':
        real_future = df['Close'].iloc[-args.days:]
        df_hist = df.iloc[:-args.days]
    else:
        real_future = None
        df_hist = df

    # 先準備 time‑series 與 tabular 兩份資料
    X_ts, y_ts = prepare_data_ts(df_hist, args.window)
    X_last_ts  = torch.tensor(df_hist[['Open','High','Low','Close','Volume']].values[-args.window:],
                              dtype=torch.float32).unsqueeze(0)

    X_tab, y_tab = prepare_data_tabular(df_hist, lookback=30)
    last_feats = prepare_data_tabular(df_hist, lookback=30)[0][-1].unsqueeze(0)

    predictions = {}
    for mod_path, cls_list in MODEL_SPECS:            # ① 這裡拿到 cls_list
        ModelClass = load_model(mod_path, cls_list)   # ② 傳入 cls_list
        if ModelClass is None:
            continue

        model_name = ModelClass.__name__              # ③ 用真正載到的類名顯示
        print(f'🔍 Training {model_name} ...')

        try:
            # GATS、IGMTF 走 time‑series,其他走 tabular
            if any(tag in mod_path for tag in ['gats', 'igmtf']):
                pred = train_predict_ts(
                    ModelClass, X_ts, y_ts, X_last_ts, device=args.device)
            else:
                pred = train_predict_tab(
                    ModelClass, X_tab, y_tab, last_feats, device=args.device)
        except Exception as e:
            print(f'⚠️ 跳過 {model_name}{e}')
            continue

        predictions[model_name.upper()] = pred
        print(f'✅ {model_name}: {pred:.2f}')



    # --------------------- 畫圖 ---------------------
    fig, ax = plt.subplots(figsize=(10,5))
    future_dates = pd.date_range(df_hist.index[-1] + timedelta(days=1), periods=args.days, freq='B')
    for name, value in predictions.items():
        ax.plot(future_dates, [value]*args.days, label=name)
    if real_future is not None:
        ax.plot(real_future.index, real_future.values, 'k--', label='Real')
    ax.set_title(f'{args.ticker} Forecast Comparison (Other Models)')
    ax.set_xlabel('Date')
    ax.set_ylabel('Close Price')
    ax.legend()
    out_png = f'series_Others_{args.ticker.lower()}_forecast.png'
    plt.tight_layout()
    plt.savefig(out_png)
    print(f'📈 圖表已儲存 {out_png}')

    # 儲存 CSV
    out_csv = f'series_Others_{args.ticker.lower()}_forecast.csv'
    pd.Series(predictions).to_csv(out_csv, header=False)
    print(f'📄 CSV 已儲存 {out_csv}')


if __name__ == "__main__":
    main()