File size: 1,423 Bytes
1be71e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from ctransformers import AutoModelForCausalLM

import gradio as gr




def generate_prompt(history):
    prompt = start_message
    for chain in history[:-1]:
        prompt += f"<|im_start|>user\n{chain[0]}<|im_end|>" +\
                  f"<|im_start|>assistant\n{chain[1]}<|im_end|>"
    prompt += f"<|im_start|>user\n{history[-1][0]}<|im_end|>" +\
               "<|im_start|>assistant\n"
    return prompt

def generate(history):
    prompt = generate_prompt(history)

    streamer = llm(prompt, stop = stop_tokens, stream=True, threads=2)
    return streamer



llm = AutoModelForCausalLM.from_pretrained("model/ggml-model-q8_0.bin", model_type='mpt')
stop_tokens = ["<|im_end|>", "<|endoftext|>"]

start_message = """<|im_start|>system
You are a helpful assistant chatbot.<|im_end|>
"""



with gr.Blocks() as demo:
    chatbot = gr.Chatbot()
    msg = gr.Textbox()
    clear = gr.Button("Clear")

    def user(user_message, history):
        return "", history + [[user_message, ""]]

    def bot(history):
        streamer = generate(history)
        
        for token in streamer:
            history[-1][1] += token
            yield history

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
        bot, chatbot, chatbot
    )
    clear.click(lambda: None, None, chatbot, queue=False)
    
demo.queue()
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)