from ctransformers import AutoModelForCausalLM import gradio as gr def generate_prompt(history): prompt = start_message for chain in history[:-1]: prompt += f"<|im_start|>user\n{chain[0]}<|im_end|>" +\ f"<|im_start|>assistant\n{chain[1]}<|im_end|>" prompt += f"<|im_start|>user\n{history[-1][0]}<|im_end|>" +\ "<|im_start|>assistant\n" return prompt def generate(history): prompt = generate_prompt(history) streamer = llm(prompt, stop = stop_tokens, stream=True, threads=2) return streamer llm = AutoModelForCausalLM.from_pretrained("model/ggml-model-q8_0.bin", model_type='mpt') stop_tokens = ["<|im_end|>", "<|endoftext|>"] start_message = """<|im_start|>system You are a helpful assistant chatbot.<|im_end|> """ with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") def user(user_message, history): return "", history + [[user_message, ""]] def bot(history): streamer = generate(history) for token in streamer: history[-1][1] += token yield history msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) demo.queue() if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)