File size: 4,450 Bytes
9b5b26a
 
 
 
c19d193
9ffa21c
6aae614
5bd60f9
 
8fe992b
9b5b26a
 
5df72d6
9b5b26a
0d1e757
 
 
 
 
 
 
f91532f
0d1e757
 
fbec709
0d1e757
 
 
 
 
 
f91532f
0d1e757
9b5b26a
0d1e757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
d595f0a
 
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
0d1e757
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
import numpy as np
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
from tools.web_search import DuckDuckGoSearchTool

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def calculate_risk_metrics(
    returns: np.ndarray,
    var_level: float = 0.95,
    n_simulations: int = 10000,
    bootstrap: bool = False,
    random_seed: Optional[int] = None
) -> Tuple[float, float]:
    """
    Calculate Value at Risk (VaR) and Expected Shortfall (ES) using the historical method, with an option for bootstrapped historical simulation.

    Args:
        returns: Array of daily returns. Each value represents the percentage return for a single day.
        var_level: VaR level (e.g., 0.95 for 95% confidence). Defaults to 0.95.
        n_simulations: Number of bootstrap simulations. Defaults to 10000.
        bootstrap: If True, use bootstrapped historical simulation. Defaults to False.
        random_seed: Seed for random number generation to ensure reproducibility. Defaults to None.

    Returns:
        Tuple[float, float]: A tuple containing the VaR and Expected Shortfall (ES) values.
    """
    if random_seed is not None:
        np.random.seed(random_seed)

    if bootstrap:
        # Perform bootstrapped historical simulation
        simulated_var = np.zeros(n_simulations)
        simulated_es = np.zeros(n_simulations)

        for i in range(n_simulations):
            # Resample returns with replacement
            resampled_returns = np.random.choice(returns, size=len(returns), replace=True)
            # Sort the resampled returns
            sorted_returns = np.sort(resampled_returns)
            # Determine the index for the VaR level
            index = int((1 - var_level) * len(sorted_returns))
            # Calculate VaR for this simulation
            simulated_var[i] = sorted_returns[index]
            # Calculate ES for this simulation (average of returns below VaR)
            simulated_es[i] = np.mean(sorted_returns[:index])

        # Calculate the average VaR and ES across all simulations
        var_value = np.mean(simulated_var)
        es_value = np.mean(simulated_es)
    else:
        # Use the standard historical method
        sorted_returns = np.sort(returns)
        index = int((1 - var_level) * len(returns))
        # Calculate VaR
        var_value = sorted_returns[index]
        # Calculate ES (average of returns below VaR)
        es_value = np.mean(sorted_returns[:index])

    return var_value, es_value

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()
visit_webpage = VisitWebpageTool()
web_search = DuckDuckGoSearchTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer,calculate_risk_metrics,get_current_time_in_timezone,visit_webpage,web_search], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()