Spaces:
Running
Running
File size: 6,162 Bytes
802b5d0 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import json
import random
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
import numpy as np
from tools.QCMTool import QCMTool
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
from tools.web_search import DuckDuckGoSearchTool
from typing import Optional, Tuple
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def calculate_risk_metrics(
returns: np.ndarray,
var_level: float = 0.95,
n_simulations: int = 10000,
bootstrap: bool = False,
random_seed: Optional[int] = None
) -> Tuple[float, float]:
"""
Calculate Value at Risk (VaR) and Expected Shortfall (ES) using the historical method, with an option for bootstrapped historical simulation.
Args:
returns: Array of daily returns. Each value represents the percentage return for a single day.
var_level: VaR level (e.g., 0.95 for 95% confidence). Defaults to 0.95.
n_simulations: Number of bootstrap simulations. Defaults to 10000.
bootstrap: If True, use bootstrapped historical simulation. Defaults to False.
random_seed: Seed for random number generation to ensure reproducibility. Defaults to None.
Returns:
Tuple[float, float]: A tuple containing the VaR and Expected Shortfall (ES) values.
"""
if random_seed is not None:
np.random.seed(random_seed)
if bootstrap:
# Perform bootstrapped historical simulation
simulated_var = np.zeros(n_simulations)
simulated_es = np.zeros(n_simulations)
for i in range(n_simulations):
# Resample returns with replacement
resampled_returns = np.random.choice(returns, size=len(returns), replace=True)
# Sort the resampled returns
sorted_returns = np.sort(resampled_returns)
# Determine the index for the VaR level
index = int((1 - var_level) * len(sorted_returns))
# Calculate VaR for this simulation
simulated_var[i] = sorted_returns[index]
# Calculate ES for this simulation (average of returns below VaR)
simulated_es[i] = np.mean(sorted_returns[:index])
# Calculate the average VaR and ES across all simulations
var_value = np.mean(simulated_var)
es_value = np.mean(simulated_es)
else:
# Use the standard historical method
sorted_returns = np.sort(returns)
index = int((1 - var_level) * len(returns))
# Calculate VaR
var_value = sorted_returns[index]
# Calculate ES (average of returns below VaR)
es_value = np.mean(sorted_returns[:index])
return var_value, es_value
@tool
def provide_my_information(query: str) -> str:
"""
Provide information about me (Tianqing LIU)based on the user's query.
Args:
query: The user's question or request for information.
Returns:
str: A response containing the requested information.
"""
# Convert the query to lowercase for case-insensitive matching
query = query.lower()
my_info = None
with open("info/info.json", 'r') as file:
my_info = json.load(file)
# Check for specific keywords in the query and return the corresponding information
if "who" in query or "about" in query or "introduce" in query or "presentation" in query:
return f" {my_info['introduction']}."
if "name" in query:
return f"My name is {my_info['name']}."
elif "location" in query:
return f"I am located in {my_info['location']}."
elif "occupation" in query or "job" in query or "work" in query:
return f"I work as a {my_info['occupation']}."
elif "education" in query or "educational" in query:
return f"I have a {my_info['education']}."
elif "skills" in query or "what can you do" in query:
return f"My skills include: {', '.join(my_info['skills'])}."
elif "hobbies" in query or "interests" in query:
return f"My hobbies are: {', '.join(my_info['hobbies'])}."
elif "contact" in query or "email" in query or "linkedin" in query or "github" in query or "cv" in query or "resume" in query:
contact_info = my_info["contact"]
return (
f"You can contact me via email at {contact_info['email']}, "
f"connect with me on LinkedIn at {contact_info['linkedin']}, "
f"or check out my GitHub profile at {contact_info['github']}."
f"or check out my website at {contact_info['website']}."
)
else:
return "I'm sorry, I don't have information on that. Please ask about my name, location, occupation, education, skills, hobbies, or contact details."
qcm_tool = QCMTool("info/questions.json")
final_answer = FinalAnswerTool()
visit_webpage = VisitWebpageTool()
web_search = DuckDuckGoSearchTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct', # it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
#image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer,calculate_risk_metrics,qcm_tool,visit_webpage,web_search,provide_my_information], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |