home_page_chat / app.py
tiantian-paris's picture
test
afd461f
raw
history blame
7.44 kB
import json
from random import random
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
import numpy as np
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
from tools.web_search import DuckDuckGoSearchTool
from typing import Optional, Tuple
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def calculate_risk_metrics(
returns: np.ndarray,
var_level: float = 0.95,
n_simulations: int = 10000,
bootstrap: bool = False,
random_seed: Optional[int] = None
) -> Tuple[float, float]:
"""
Calculate Value at Risk (VaR) and Expected Shortfall (ES) using the historical method, with an option for bootstrapped historical simulation.
Args:
returns: Array of daily returns. Each value represents the percentage return for a single day.
var_level: VaR level (e.g., 0.95 for 95% confidence). Defaults to 0.95.
n_simulations: Number of bootstrap simulations. Defaults to 10000.
bootstrap: If True, use bootstrapped historical simulation. Defaults to False.
random_seed: Seed for random number generation to ensure reproducibility. Defaults to None.
Returns:
Tuple[float, float]: A tuple containing the VaR and Expected Shortfall (ES) values.
"""
if random_seed is not None:
np.random.seed(random_seed)
if bootstrap:
# Perform bootstrapped historical simulation
simulated_var = np.zeros(n_simulations)
simulated_es = np.zeros(n_simulations)
for i in range(n_simulations):
# Resample returns with replacement
resampled_returns = np.random.choice(returns, size=len(returns), replace=True)
# Sort the resampled returns
sorted_returns = np.sort(resampled_returns)
# Determine the index for the VaR level
index = int((1 - var_level) * len(sorted_returns))
# Calculate VaR for this simulation
simulated_var[i] = sorted_returns[index]
# Calculate ES for this simulation (average of returns below VaR)
simulated_es[i] = np.mean(sorted_returns[:index])
# Calculate the average VaR and ES across all simulations
var_value = np.mean(simulated_var)
es_value = np.mean(simulated_es)
else:
# Use the standard historical method
sorted_returns = np.sort(returns)
index = int((1 - var_level) * len(returns))
# Calculate VaR
var_value = sorted_returns[index]
# Calculate ES (average of returns below VaR)
es_value = np.mean(sorted_returns[:index])
return var_value, es_value
@tool
def provide_my_information(query: str) -> str:
"""
Provide information about me (Tianqing LIU)based on the user's query.
Args:
query: The user's question or request for information.
Returns:
str: A response containing the requested information.
"""
# Convert the query to lowercase for case-insensitive matching
query = query.lower()
my_info = None
with open("info/info.json", 'r') as file:
my_info = json.load(file)
# Check for specific keywords in the query and return the corresponding information
if "who" in query or "about" in query or "introduce" in query or "presentation" in query:
return f" {my_info['introduction']}."
if "name" in query:
return f"My name is {my_info['name']}."
elif "location" in query:
return f"I am located in {my_info['location']}."
elif "occupation" in query or "job" in query or "work" in query:
return f"I work as a {my_info['occupation']}."
elif "education" in query or "educational" in query:
return f"I have a {my_info['education']}."
elif "skills" in query or "what can you do" in query:
return f"My skills include: {', '.join(my_info['skills'])}."
elif "hobbies" in query or "interests" in query:
return f"My hobbies are: {', '.join(my_info['hobbies'])}."
elif "contact" in query or "email" in query or "linkedin" in query or "github" in query or "cv" in query or "resume" in query:
contact_info = my_info["contact"]
return (
f"You can contact me via email at {contact_info['email']}, "
f"connect with me on LinkedIn at {contact_info['linkedin']}, "
f"or check out my GitHub profile at {contact_info['github']}."
f"or check out my website at {contact_info['website']}."
)
else:
return "I'm sorry, I don't have information on that. Please ask about my name, location, occupation, education, skills, hobbies, or contact details."
@tool
def qcm_tool(json_file: str, user_answer: Optional[str] = None) -> str:
"""
A tool that picks a random QCM (Multiple Choice Question) from a JSON file and checks the user's answer.
Args:
json_file: Path to the JSON file containing questions.
user_answer: The user's answer (optional). If not provided, the tool returns a question and options.
Returns:
If no user_answer is provided:
A string containing the question and options.
If user_answer is provided:
A string indicating whether the answer is correct and providing an explanation.
"""
try:
# Load questions from the JSON file
with open("info/questions.json", 'r') as file:
questions = json.load(file)
# Pick a random question
question = random.choice(questions)
if user_answer is None:
# Return the question and options
options_str = "\n".join([f"{chr(65 + i)}. {opt}" for i, opt in enumerate(question['options'])])
return f"Question: {question['question']}\nOptions:\n{options_str}"
else:
# Check the user's answer
if user_answer.strip().upper() == question['correct_answer'].strip().upper():
return f"Correct! 🎉\nExplanation: {question['explanation']}"
else:
return f"Incorrect! 😞\nExplanation: {question['explanation']}"
except Exception as e:
return f"Error in QCM tool: {str(e)}"
final_answer = FinalAnswerTool()
visit_webpage = VisitWebpageTool()
web_search = DuckDuckGoSearchTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer,calculate_risk_metrics,qcm_tool,visit_webpage,web_search,provide_my_information], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch()