import os import requests import json import time import threading import uuid import shutil from datetime import datetime from pathlib import Path from http.server import HTTPServer, SimpleHTTPRequestHandler import base64 from dotenv import load_dotenv import gradio as gr import random import torch from PIL import Image, ImageDraw, ImageFont from transformers import AutoTokenizer, AutoModelForSequenceClassification from functools import lru_cache load_dotenv() MODEL_URL = "TostAI/nsfw-text-detection-large" CLASS_NAMES = { 0: "✅ SAFE", 1: "⚠️ QUESTIONABLE", 2: "🚫 UNSAFE" } tokenizer = AutoTokenizer.from_pretrained(MODEL_URL) model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL) class SessionManager: _instances = {} _lock = threading.Lock() @classmethod def get_session(cls, session_id): with cls._lock: if session_id not in cls._instances: cls._instances[session_id] = { 'count': 0, 'history': [], 'last_active': time.time() } return cls._instances[session_id] @classmethod def cleanup_sessions(cls): with cls._lock: now = time.time() expired = [k for k, v in cls._instances.items() if now - v['last_active'] > 3600] for k in expired: del cls._instances[k] class RateLimiter: def __init__(self): self.clients = {} self.lock = threading.Lock() def check(self, client_id): with self.lock: now = time.time() if client_id not in self.clients: self.clients[client_id] = {'count': 1, 'reset': now + 3600} return True if now > self.clients[client_id]['reset']: self.clients[client_id] = {'count': 1, 'reset': now + 3600} return True if self.clients[client_id]['count'] >= 20: return False self.clients[client_id]['count'] += 1 return True session_manager = SessionManager() rate_limiter = RateLimiter() def image_to_base64(file_path): try: with open(file_path, "rb") as f: ext = Path(file_path).suffix.lower()[1:] mime_map = {'jpg':'jpeg','jpeg':'jpeg','png':'png','webp':'webp','gif':'gif'} mime = mime_map.get(ext, 'jpeg') encoded = base64.b64encode(f.read()) if len(encoded) % 4: encoded += b'=' * (4 - len(encoded) % 4) return f"data:image/{mime};base64,{encoded.decode()}" except Exception as e: raise ValueError(f"Base64 Error: {str(e)}") def create_error_image(message): img = Image.new("RGB", (832, 480), "#ffdddd") try: font = ImageFont.truetype("arial.ttf", 24) except: font = ImageFont.load_default() draw = ImageDraw.Draw(img) text = f"Error: {message[:60]}..." if len(message) > 60 else message draw.text((50, 200), text, fill="#ff0000", font=font) img.save("error.jpg") return "error.jpg" @lru_cache(maxsize=100) def classify_prompt(prompt): inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) return torch.argmax(outputs.logits).item() def generate_video( image, prompt, duration, enable_safety, flow_shift, guidance, negative_prompt, steps, seed, size, session_id ): safety_level = classify_prompt(prompt) if safety_level != 0: error_img = create_error_image(CLASS_NAMES[safety_level]) yield f"❌ Blocked: {CLASS_NAMES[safety_level]}", error_img return if not rate_limiter.check(session_id): error_img = create_error_image("Hourly limit exceeded (20 requests)") yield "❌ 请求过于频繁,请稍后再试", error_img return session = session_manager.get_session(session_id) session['last_active'] = time.time() session['count'] += 1 try: api_key = os.getenv("WAVESPEED_API_KEY") if not api_key: raise ValueError("API key missing") base64_img = image_to_base64(image) headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"} guidance_scale = guidance inference_steps = steps payload = { "image": base64_img, "enable_safety_checker": True, "prompt": prompt, "duration": duration, "flow_shift": flow_shift, "guidance_scale": guidance_scale, "negative_prompt": negative_prompt, "num_inference_steps": inference_steps, "seed": seed if seed != -1 else random.randint(0, 999999), "size": "832*480" } # 提交任务 response = requests.post( "https://api.wavespeed.ai/api/v2/wavespeed-ai/wan-2.1/i2v-480p-ultra-fast", headers=headers, json=payload ) if response.status_code != 200: raise Exception(f"API Error {response.status_code}: {response.text}") request_id = response.json()["data"]["id"] yield f"✅ 任务已提交 (ID: {request_id})", None except Exception as e: error_img = create_error_image(str(e)) yield f"❌ 提交失败: {str(e)}", error_img return result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result" start_time = time.time() while True: time.sleep(1) try: resp = requests.get(result_url, headers=headers) if resp.status_code != 200: raise Exception(f"状态查询失败: {resp.text}") data = resp.json()["data"] status = data["status"] if status == "completed": elapsed = time.time() - start_time video_url = data["outputs"][0] session["history"].append(video_url) yield f"🎉 生成成功! 耗时 {elapsed:.1f}s", video_url return elif status == "failed": raise Exception(data.get("error", "Unknown error")) else: yield f"⏳ 当前状态: {status.capitalize()}...", None except Exception as e: error_img = create_error_image(str(e)) yield f"❌ 生成失败: {str(e)}", error_img return def cleanup_task(): while True: session_manager.cleanup_sessions() time.sleep(3600) with gr.Blocks( theme=gr.themes.Soft(), css=""" .video-preview { max-width: 600px !important; } .status-box { padding: 10px; border-radius: 5px; margin: 5px; } .safe { background: #e8f5e9; border: 1px solid #a5d6a7; } .warning { background: #fff3e0; border: 1px solid #ffcc80; } .error { background: #ffebee; border: 1px solid #ef9a9a; } """ ) as app: session_id = gr.State(str(uuid.uuid4())) gr.Markdown("# 🌊 Wan-2.1-i2v-480p-Ultra-Fast Run On WaveSpeedAI") gr.Markdown(""" [WaveSpeedAI](https://wavespeed.ai/) is the global pioneer in accelerating AI-powered video and image generation. Our in-house inference accelerator provides lossless speedup on image & video generation based on our rich inference optimization software stack, including our in-house inference compiler, CUDA kernel libraries and parallel computing libraries. """) gr.Markdown(""" The Wan2.1 14B model is an advanced image-to-video model that offers accelerated inference capabilities, enabling high-res video generation with high visual quality and motion diversity. """) with gr.Row(): with gr.Column(scale=1): img_input = gr.Image(type="filepath", label="Upload Image") prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Prompt...") negative_prompt = gr.Textbox(label="Negative Prompt", lines=2) with gr.Row(): size = gr.Dropdown(["832*480", "480*832"], value="832*480", interactive=True, label="Resolution") steps = gr.Slider(1, 50, value=30, label="Inference Steps") with gr.Row(): duration = gr.Slider(1, 10, value=5, step=1, label="时长(秒)") guidance = gr.Slider(1, 20, value=7, label="Guidance Scale") with gr.Row(): seed = gr.Number(-1, label="Seed") random_seed_btn = gr.Button("Random🎲Seed", variant="secondary") with gr.Row(): enable_safety = gr.Checkbox(label="🔒 Enable Safety Checker",value=True, interactive=False) flow_shift = gr.Number(3, label="Flow Shift",interactive=False) with gr.Column(scale=1): video_output = gr.Video(label="Generated Video", format="mp4", elem_classes=["video-preview"]) status_output = gr.Textbox(label="System Status", interactive=False, lines=4) generate_btn = gr.Button("Generated", variant="primary") # with gr.Accordion("Generation History", open=False): # history_gallery = gr.Gallery(label="History", columns=3) with gr.Accordion("Safety Status", open=True): gr.Markdown("""