import gradio as gr import asyncio import aiohttp import time from datetime import datetime import plotly.graph_objects as go from typing import Dict, List import os from dotenv import load_dotenv import json from PIL import Image, ImageDraw, ImageFont from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import uuid import threading import functools # Load environment variables first load_dotenv() # Constants API_BASE_URL = "https://api.wavespeed.ai/api/v2" API_KEY = os.getenv("WAVESPEED_API_KEY") # Move API_KEY to global scope if not API_KEY: raise ValueError("WAVESPEED_API_KEY not found in environment variables") # Rest of constants BACKENDS = { "flux-dev": { "endpoint": f"{API_BASE_URL}/wavespeed-ai/flux-dev", "name": "Flux-dev", "color": "#FF9800", }, "hidream-dev": { "endpoint": f"{API_BASE_URL}/wavespeed-ai/hidream-i1-dev", "name": "HiDream-dev", "color": "#2196F3", }, "hidream-full": { "endpoint": f"{API_BASE_URL}/wavespeed-ai/hidream-i1-full", "name": "HiDream-full", "color": "#4CAF50", }, } MODEL_URL = "TostAI/nsfw-text-detection-large" TITLE = "🖼️🔍 Image Prompt Safety Classifier 🛡️" DESCRIPTION = "✨ Enter an image generation prompt to classify its safety level! ✨" # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(MODEL_URL) model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL) # Define class names with emojis and detailed descriptions CLASS_NAMES = { 0: "✅ SAFE - This prompt is appropriate and harmless.", 1: "⚠️ QUESTIONABLE - This prompt may require further review.", 2: "🚫 UNSAFE - This prompt is likely to generate inappropriate content." } @functools.lru_cache(maxsize=128) def classify_text(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=1024) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class = torch.argmax(logits, dim=1).item() return predicted_class, CLASS_NAMES[predicted_class] class BackendStatus: def __init__(self): self.reset() self.history: List[Dict] = [] def reset(self): self.status = "idle" self.progress = 0 self.start_time = None self.end_time = None def start(self): self.status = "processing" self.progress = 0 self.start_time = time.time() self.end_time = None def complete(self): self.status = "completed" self.progress = 100 self.end_time = time.time() self.history.append({ "timestamp": datetime.now(), "duration": self.end_time - self.start_time }) def fail(self): self.status = "failed" self.end_time = time.time() class SessionManager: _instances = {} _lock = threading.Lock() @classmethod def get_manager(cls, session_id=None): if session_id is None: session_id = str(uuid.uuid4()) with cls._lock: if session_id not in cls._instances: cls._instances[session_id] = GenerationManager() return session_id, cls._instances[session_id] @classmethod def cleanup_old_sessions(cls, max_age=3600): # 1 hour default current_time = time.time() with cls._lock: to_remove = [] for session_id, manager in cls._instances.items(): if (hasattr(manager, "last_activity") and current_time - manager.last_activity > max_age): to_remove.append(session_id) for session_id in to_remove: del cls._instances[session_id] class GenerationManager: def __init__(self): self.backend_statuses = { backend: BackendStatus() for backend in BACKENDS } self.last_activity = time.time() self.request_timestamps = [] # Track timestamps of requests def update_activity(self): self.last_activity = time.time() def add_request_timestamp(self): self.request_timestamps.append(time.time()) def has_exceeded_limit(self, limit=10): # Default limit: 10 requests per hour current_time = time.time() # Filter timestamps to only include those within the last hour self.request_timestamps = [ ts for ts in self.request_timestamps if current_time - ts <= 3600 ] return len(self.request_timestamps) >= limit def get_performance_plot(self): fig = go.Figure() has_data = False for backend, status in self.backend_statuses.items(): durations = [h["duration"] for h in status.history] if durations: has_data = True avg_duration = sum(durations) / len(durations) # Use bar chart instead of box plot fig.add_trace( go.Bar( y=[avg_duration], # x=[BACKENDS[backend]["name"]], # Backend name name=BACKENDS[backend]["name"], marker_color=BACKENDS[backend]["color"], text=[f"{avg_duration:.2f}s"], # Show time in seconds textposition="auto", width=[0.5], # Make bars narrower )) # Set a minimum y-axis range if we have data if has_data: max_duration = max([ max([h["duration"] for h in status.history] or [0]) for status in self.backend_statuses.values() ]) # Add 20% padding to the top y_max = max_duration * 1.2 # Ensure the y-axis always starts at 0 fig.update_yaxes(range=[0, y_max]) fig.update_layout( title="Average Generation Time (Including Network Latency)", yaxis_title="Seconds", xaxis_title="", showlegend=False, template="simple_white", height=400, # Increase height margin=dict(l=50, r=50, t=50, b=50), # Add margins font=dict(size=14), # Larger font ) # Make sure we have a valid figure even if no data if not has_data: fig.add_annotation( text="No timing data available yet", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False, font=dict(size=16), ) return fig async def submit_task(self, backend: str, prompt: str) -> str: status = self.backend_statuses[backend] status.start() try: url = BACKENDS[backend]["endpoint"] headers = { "Content-Type": "application/json", "Authorization": f"Bearer {API_KEY}", } payload = { "prompt": prompt, "enable_safety_checker": True, "enable_base64_output": True, # Enable base64 output "size": "1024*1024", "seed": -1, } print(f"Submitting task to {backend}") print(f"URL: {url}") print(f"Payload: {json.dumps(payload, indent=2)}") # Use aiohttp instead of requests for async async with aiohttp.ClientSession() as session: async with session.post(url, headers=headers, json=payload) as response: if response.status == 200: result = await response.json() request_id = result["data"]["id"] print( f"Task submitted successfully. Request ID: {request_id}" ) return request_id else: text = await response.text() raise Exception( f"API error: {response.status}, {text}") except Exception as e: status.fail() raise Exception(f"Failed to submit task: {str(e)}") # Add this method to reset history def reset_history(self): """Reset history for all backends""" for status in self.backend_statuses.values(): status.history = [] # Clear history data return self class ClientManager: _instances = {} _lock = threading.Lock() @classmethod def get_manager(cls, client_id=None): if not client_id: client_id = str(uuid.uuid4()) with cls._lock: if client_id not in cls._instances: cls._instances[client_id] = ClientGenerationManager() return cls._instances[client_id] @classmethod def cleanup_old_clients(cls, max_age=3600): # 1 hour default current_time = time.time() with cls._lock: to_remove = [] for client_id, manager in cls._instances.items(): if (hasattr(manager, "last_activity") and current_time - manager.last_activity > max_age): to_remove.append(client_id) for client_id in to_remove: del cls._instances[client_id] class ClientGenerationManager: def __init__(self): self.lock = threading.Lock() self.last_activity = time.time() self.request_timestamps = [] # Track timestamps of requests def update_activity(self): with self.lock: self.last_activity = time.time() def add_request_timestamp(self): with self.lock: self.request_timestamps.append(time.time()) def has_exceeded_limit(self, limit=20): with self.lock: current_time = time.time() # Filter timestamps to only include those within the last hour self.request_timestamps = [ ts for ts in self.request_timestamps if current_time - ts <= 3600 ] return len(self.request_timestamps) >= limit # Helper function to create error images as data URIs def create_error_image(backend, error_message): try: import base64 from io import BytesIO # Create an in-memory image img = Image.new("RGB", (512, 512), color="#ffdddd") draw = ImageDraw.Draw(img) try: font = ImageFont.truetype("Arial", 20) except: font = ImageFont.load_default() # Wrap and draw error message words = error_message.split(" ") lines = [] line = "" for word in words: if len(line + word) < 40: line += word + " " else: lines.append(line) line = word + " " if line: lines.append(line) y_position = 100 for line in lines: draw.text((50, y_position), line, fill="black", font=font) y_position += 30 # Save to a BytesIO object instead of a file buffer = BytesIO() img.save(buffer, format="JPEG") img_bytes = buffer.getvalue() # Convert to base64 and return as data URI return f"data:image/jpeg;base64,{base64.b64encode(img_bytes).decode('utf-8')}" except Exception as e: print(f"Failed to create error image: {e}") # Return a simple error message as fallback return "Error: " + error_message # Fix the poll_once function to accept a manager parameter async def poll_once(manager, backend, request_id): """Poll once and return result if complete, otherwise None""" headers = {"Authorization": f"Bearer {API_KEY}"} url = f"{API_BASE_URL}/predictions/{request_id}/result" async with aiohttp.ClientSession() as session: async with session.get(url, headers=headers) as response: if response.status == 200: result = await response.json() data = result["data"] current_status = data["status"] if current_status == "completed": # IMPORTANT: Update status BEFORE returning - using the passed manager manager.backend_statuses[backend].complete() manager.update_activity() # Handle base64 output output = data["outputs"][0] # Check if it's a base64 string or URL if isinstance(output, str) and output.startswith("http"): # It's a URL - return as is return output else: # It's base64 data - format it as a data URI if needed try: # Format as data URI for Gradio to display directly if isinstance( output, str ) and not output.startswith("data:image"): # Convert raw base64 to data URI format return f"data:image/jpeg;base64,{output}" else: # Already in data URI format return output except Exception as e: print(f"Error processing base64 image: {e}") raise Exception( f"Failed to process base64 image: {str(e)}") elif current_status == "failed": manager.backend_statuses[backend].fail() manager.update_activity() error = data.get("error", "Unknown error") raise Exception(error) # Still processing return None else: raise Exception(f"Poll error: {response.status}") # Store recent generations recent_generations = [] # Example prompts example_prompts = [ "A Ghibli-inspired scene featuring a giant, friendly creature walking through a lush forest and holding a sign saying 'HiDream', with vibrant colors, soft lighting, and whimsical details like floating lights and colorful, magical creatures. The scene captures a peaceful, enchanted atmosphere.", "A neon-lit cyberpunk city at night, filled with towering skyscrapers, flying cars, and bustling streets. The air is thick with mist, and robots walk alongside humans, all illuminated by vibrant neon signs, holographic advertisements, and digital billboards.", "A highly detailed, realistic portrait of an elderly man with deep wrinkles and a kind smile. Soft natural lighting, realistic skin textures, and lifelike details, capturing every strand of his white beard and the reflections in his glasses.", ] # Use a state variable to store session ID with gr.Blocks(theme=gr.themes.Soft()) as demo: session_id = gr.State(None) # Add this to store session ID # session_id = gr.BrowserState()(None) # Add this to store session ID gr.Markdown("# 🌊 WaveSpeedAI HiDream Arena") # Add the introduction with link to WaveSpeedAI gr.Markdown(""" [WaveSpeedAI](https://wavespeed.ai/) is the global pioneer in accelerating AI-powered video and image generation. Our in-house inference accelerator provides lossless speedup on image & video generation based on our rich inference optimization software stack, including our in-house inference compiler, CUDA kernel libraries and parallel computing libraries. """) gr.Markdown(""" This demo showcases the performance and outputs of leading image generation models, including HiDream and Flux, on our accelerated inference platform. """) with gr.Row(): with gr.Column(scale=3): example_dropdown = gr.Dropdown( choices=example_prompts, label="Choose an example prompt", interactive=True, ) input_text = gr.Textbox( example_prompts[0], label="Enter your prompt", placeholder="Type here...", lines=3, ) with gr.Column(scale=1): generate_btn = gr.Button("Generate", variant="primary") example_dropdown.change(lambda ex: ex, inputs=[example_dropdown], outputs=[input_text], api_name=False) # Two status boxes - small (default) and big (during generation) small_status_box = gr.Markdown("Ready to generate images", elem_id="small-status") # Big status box in its own row with styling with gr.Row(elem_id="big-status-row"): big_status_box = gr.Markdown("", elem_id="big-status", visible=False, elem_classes="big-status-box") with gr.Row(): with gr.Column(): draft_output = gr.Image(label="Flux-dev") with gr.Column(): quick_output = gr.Image(label="HiDream-dev") with gr.Column(): best_output = gr.Image(label="HiDream-full") performance_plot = gr.Plot(label="Performance Metrics") with gr.Accordion("Recent Generations (last 16)", open=False): recent_gallery = gr.Gallery(label="Prompt and Output", columns=3, interactive=False) def get_recent_gallery_items(): gallery_items = [] for r in reversed(recent_generations): if any(x is None for x in r.values()): continue gallery_items.append((r["flux-dev"], f"FLUX-dev: {r['prompt']}")) gallery_items.append( (r["hidream-dev"], f"HiDream-dev: {r['prompt']}")) gallery_items.append( (r["hidream-full"], f"HiDream-full: {r['prompt']}")) return gallery_items def update_recent_gallery(prompt, results): recent_generations.append({ "prompt": prompt, "flux-dev": results["flux-dev"], "hidream-dev": results["hidream-dev"], "hidream-full": results["hidream-full"], }) if len(recent_generations) > 16: recent_generations.pop(0) gallery_items = get_recent_gallery_items() return gr.update(value=gallery_items) # Add custom CSS for the big status box css = """ #big-status-row { margin: 20px 0; } #big-status { font-size: 28px; /* Even larger font size */ font-weight: bold; padding: 30px; /* More padding */ background-color: #0D47A1; /* Deeper blue background */ color: white; /* White text */ border-radius: 10px; text-align: center; margin: 0 auto; box-shadow: 0 6px 12px rgba(0, 0, 0, 0.2); /* Stronger shadow */ animation: deep-breath 3s infinite; /* Slower, deeper breathing animation */ width: 100%; /* Full width */ max-width: 800px; /* Maximum width */ transition: all 0.3s ease; /* Smooth transitions */ border-left: 6px solid #64B5F6; /* Add a colored border */ border-right: 6px solid #64B5F6; /* Add a colored border */ } /* Deeper breathing animation */ @keyframes deep-breath { 0% { opacity: 0.7; transform: scale(0.98); box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); } 50% { opacity: 1; transform: scale(1.01); box-shadow: 0 8px 16px rgba(0, 0, 0, 0.3); } 100% { opacity: 0.7; transform: scale(0.98); box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); } } """ gr.HTML(f"") # Update the generation function to use session manager async def generate_all_backends_with_status_boxes(prompt, current_session_id, request: gr.Request): client_ip = request.client.host x_forwarded_for = request.headers.get('x-forwarded-for') if x_forwarded_for: client_ip = x_forwarded_for print(f"Client IP: {client_ip}") client_generation_manager = ClientManager.get_manager(client_ip) client_generation_manager.update_activity() if client_generation_manager.has_exceeded_limit(limit=20): error_message = "❌ Your network has exceeded the limit of 20 requests per hour. Please try again later." yield ( error_message, error_message, gr.update(visible=False), gr.update(visible=True), None, None, None, None, current_session_id, # Return the session ID None, ) return client_generation_manager.add_request_timestamp() """Generate images with big status box during generation""" # Get or create a session manager session_id, manager = SessionManager.get_manager(current_session_id) manager.update_activity() # Check if the user has exceeded the request limit if manager.has_exceeded_limit( limit=10): # Set the limit to 10 requests per hour error_message = "❌ You have exceeded the limit of 10 requests per hour. Please try again later." yield ( error_message, error_message, gr.update(visible=False), gr.update(visible=True), None, None, None, None, session_id, None, ) return # Add the current request timestamp manager.add_request_timestamp() # IMPORTANT: Reset history when starting a new generation if prompt and prompt.strip() != "": manager.reset_history() # Clear previous performance metrics if not prompt or prompt.strip() == "": # Handle empty prompt case yield ( "⚠️ Please enter a prompt first", "⚠️ Please enter a prompt first", gr.update(visible=True), gr.update(visible=False), None, None, None, None, session_id, # Return the session ID None, ) return # Check if the prompt is safe classification, message = classify_text(prompt) if classification != 0: # Handle unsafe prompt case yield ( message, message, gr.update(visible=True), gr.update(visible=False), None, None, None, None, session_id, # Return the session ID None, ) return # Status message status_message = f"🔄 PROCESSING: '{prompt}'" # Initial state - clear all images, show big status box yield ( status_message, status_message, gr.update(visible=True), gr.update(visible=False), None, None, None, None, session_id, # Return the session ID None, ) # For production mode: completed_backends = set() results = {"flux-dev": None, "hidream-dev": None, "hidream-full": None} try: # Submit all tasks request_ids = {} for backend in BACKENDS: try: request_id = await manager.submit_task(backend, prompt) request_ids[backend] = request_id except Exception as e: # Handle submission error print(f"Error submitting task for {backend}: {e}") results[backend] = create_error_image(backend, str(e)) completed_backends.add(backend) # Poll all backends until they complete max_poll_attempts = 300 poll_attempt = 0 # Main polling loop while len(completed_backends ) < 3 and poll_attempt < max_poll_attempts: poll_attempt += 1 # Poll each pending backend for backend in list(BACKENDS.keys()): if backend in completed_backends: continue try: # Only do actual API calls every few attempts to reduce load if poll_attempt % 2 == 0 or backend == "flux-dev": # Use the session manager instead of global manager result = await poll_once(manager, backend, request_ids[backend]) if result: # Backend completed results[backend] = result completed_backends.add(backend) # Yield updated state when an image completes yield ( status_message, status_message, gr.update(visible=True), gr.update(visible=False), results["flux-dev"], results["hidream-dev"], results["hidream-full"], (manager.get_performance_plot() if any(completed_backends) else None), session_id, None, ) except Exception as e: print(f"Error polling {backend}: {str(e)}") # Wait between poll attempts await asyncio.sleep(0.1) # Final status final_status = ("✅ All generations completed!" if len(completed_backends) == 3 else "⚠️ Some generations timed out") gallery_update = update_recent_gallery(prompt, results) # Final yield yield ( final_status, final_status, gr.update(visible=False), gr.update(visible=True), results["flux-dev"], results["hidream-dev"], results["hidream-full"], manager.get_performance_plot(), session_id, gallery_update, ) except Exception as e: # Error handling error_message = f"❌ Error: {str(e)}" yield ( error_message, error_message, gr.update(visible=False), gr.update(visible=True), None, None, None, None, session_id, None, ) # Schedule periodic cleanup of old sessions def cleanup_task(): SessionManager.cleanup_old_sessions() ClientManager.cleanup_old_clients() # Schedule the next cleanup threading.Timer(3600, cleanup_task).start() # Run every hour # Start the cleanup task cleanup_task() # Update the click handler to include session_id generate_btn.click( fn=generate_all_backends_with_status_boxes, inputs=[input_text, session_id], outputs=[ small_status_box, big_status_box, big_status_box, # visibility small_status_box, # visibility draft_output, quick_output, best_output, performance_plot, session_id, # Update the session ID recent_gallery, # Update the gallery ], # api_name="generate", api_name=False, max_batch_size=10, # Process up to 10 requests at once concurrency_limit=20, # Allow up to 20 concurrent requests concurrency_id="generation", # Group concurrent requests under this ID ) # Launch with increased max_threads if __name__ == "__main__": demo.queue(max_size=50).launch( server_name="0.0.0.0", max_threads=16, # Increase thread count for better concurrency ) demo.queue(max_size=4).launch( server_name="0.0.0.0", max_threads=16, # Increase thread count for better concurrency )