yrosenbloom's picture
Update app.py
c752dca verified
import gradio as gr
from PIL import Image, ImageFilter, ImageOps
import numpy as np
import torch
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation, DPTFeatureExtractor, DPTForDepthEstimation
import cv2
# Load segmentation model
seg_model_name = "nvidia/segformer-b1-finetuned-ade-512-512"
seg_feature_extractor = SegformerFeatureExtractor.from_pretrained(seg_model_name)
seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_name)
# Load depth estimation model
depth_model_name = "Intel/dpt-hybrid-midas"
depth_feature_extractor = DPTFeatureExtractor.from_pretrained(depth_model_name)
depth_model = DPTForDepthEstimation.from_pretrained(depth_model_name)
# Device configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seg_model.to(device)
depth_model.to(device)
def process_image(image):
# Ensure image is in RGB format and resize
image = ImageOps.exif_transpose(image).resize((512, 512))
# Perform segmentation
inputs = seg_feature_extractor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = seg_model(**inputs)
logits = outputs.logits
segmentation = torch.argmax(logits, dim=1)[0].cpu().numpy()
binary_mask = np.where(segmentation > 0, 255, 0).astype(np.uint8)
# Apply Gaussian Blur to the background
blurred_background = image.filter(ImageFilter.GaussianBlur(15))
foreground = Image.fromarray(binary_mask).convert("L").resize(image.size)
output_blur = Image.composite(image, blurred_background, foreground)
# Depth estimation for lens blur
depth_inputs = depth_feature_extractor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
depth_outputs = depth_model(**depth_inputs)
predicted_depth = depth_outputs.predicted_depth.squeeze().cpu().numpy()
# Normalize depth map
depth_min, depth_max = predicted_depth.min(), predicted_depth.max()
normalized_depth = (predicted_depth - depth_min) / (depth_max - depth_min)
normalized_depth_resized = cv2.resize(normalized_depth, (512, 512))
# Lens blur using depth map
blurred_image = np.array(image).astype(np.float32)
blur_intensity = normalized_depth_resized * 20
for y in range(image.size[1]):
for x in range(image.size[0]):
sigma = blur_intensity[y, x]
kernel_size = int(2 * sigma + 1)
if kernel_size > 1:
patch = image.crop((x - kernel_size//2, y - kernel_size//2, x + kernel_size//2 + 1, y + kernel_size//2 + 1))
patch = patch.filter(ImageFilter.GaussianBlur(sigma))
blurred_image[y, x, :] = np.array(patch)[kernel_size//2, kernel_size//2, :]
lens_blur_image = Image.fromarray(np.clip(blurred_image, 0, 255).astype(np.uint8))
return image, output_blur, lens_blur_image
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil", label="Upload an Image"),
outputs=[
gr.Image(label="Original Image"),
gr.Image(label="Gaussian Blur Effect"),
gr.Image(label="Depth-Based Lens Blur Effect")
],
title="Image Blurring with Gaussian and Depth-Based Lens Blur",
description="Upload an image to see Gaussian blur and depth-based lens blur effects."
)
iface.launch()