--- base_model: google/gemma-2b library_name: peft license: gemma metrics: - accuracy tags: - trl - reward-trainer - generated_from_trainer model-index: - name: 0721_222324-google-gemma-2b results: [] --- [Visualize in Weights & Biases](https://wandb.ai/6-5940/huggingface/runs/sqce7ion) # 0721_222324-google-gemma-2b This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2063 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.6308 | 3.3333 | 5 | 0.6551 | 0.7 | | 0.6283 | 6.6667 | 10 | 0.6179 | 0.75 | | 0.5927 | 10.0 | 15 | 0.5822 | 0.75 | | 0.6668 | 13.3333 | 20 | 0.5473 | 0.8 | | 0.5427 | 16.6667 | 25 | 0.5125 | 0.85 | | 0.5109 | 20.0 | 30 | 0.4783 | 0.85 | | 0.4731 | 23.3333 | 35 | 0.4456 | 0.95 | | 0.4261 | 26.6667 | 40 | 0.4137 | 0.95 | | 0.3719 | 30.0 | 45 | 0.3832 | 0.95 | | 0.4027 | 33.3333 | 50 | 0.3542 | 0.95 | | 0.3231 | 36.6667 | 55 | 0.3276 | 1.0 | | 0.3292 | 40.0 | 60 | 0.3032 | 1.0 | | 0.3517 | 43.3333 | 65 | 0.2810 | 1.0 | | 0.2759 | 46.6667 | 70 | 0.2618 | 1.0 | | 0.2743 | 50.0 | 75 | 0.2448 | 1.0 | | 0.2651 | 53.3333 | 80 | 0.2310 | 1.0 | | 0.2181 | 56.6667 | 85 | 0.2203 | 1.0 | | 0.2067 | 60.0 | 90 | 0.2127 | 1.0 | | 0.2268 | 63.3333 | 95 | 0.2081 | 1.0 | | 0.2014 | 66.6667 | 100 | 0.2063 | 1.0 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1