File size: 46,654 Bytes
ef46f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
import argparse
from datetime import datetime
import gc
import json
import random
import os
import re
import time
import math
import copy
from typing import Tuple, Optional, List, Union, Any, Dict

import torch
from safetensors.torch import load_file, save_file
from safetensors import safe_open
from PIL import Image
import cv2
import numpy as np
import torchvision.transforms.functional as TF
from transformers import LlamaModel
from tqdm import tqdm

from networks import lora_framepack
from hunyuan_model.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
from frame_pack import hunyuan
from frame_pack.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked, load_packed_model
from frame_pack.utils import crop_or_pad_yield_mask, resize_and_center_crop, soft_append_bcthw
from frame_pack.bucket_tools import find_nearest_bucket
from frame_pack.clip_vision import hf_clip_vision_encode
from frame_pack.k_diffusion_hunyuan import sample_hunyuan
from dataset import image_video_dataset

try:
    from lycoris.kohya import create_network_from_weights
except:
    pass

from utils.device_utils import clean_memory_on_device
from hv_generate_video import save_images_grid, save_videos_grid, synchronize_device
from wan_generate_video import merge_lora_weights
from frame_pack.framepack_utils import load_vae, load_text_encoder1, load_text_encoder2, load_image_encoders
from dataset.image_video_dataset import load_video

import logging

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)


class GenerationSettings:
    def __init__(self, device: torch.device, dit_weight_dtype: Optional[torch.dtype] = None):
        self.device = device
        self.dit_weight_dtype = dit_weight_dtype


def parse_args() -> argparse.Namespace:
    """parse command line arguments"""
    parser = argparse.ArgumentParser(description="Wan 2.1 inference script")

    # WAN arguments
    # parser.add_argument("--ckpt_dir", type=str, default=None, help="The path to the checkpoint directory (Wan 2.1 official).")
    parser.add_argument(
        "--sample_solver", type=str, default="unipc", choices=["unipc", "dpm++", "vanilla"], help="The solver used to sample."
    )

    parser.add_argument("--dit", type=str, default=None, help="DiT directory or path")
    parser.add_argument("--vae", type=str, default=None, help="VAE directory or path")
    parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory or path")
    parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory or path")
    parser.add_argument("--image_encoder", type=str, required=True, help="Image Encoder directory or path")
    # LoRA
    parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path")
    parser.add_argument("--lora_multiplier", type=float, nargs="*", default=1.0, help="LoRA multiplier")
    parser.add_argument("--include_patterns", type=str, nargs="*", default=None, help="LoRA module include patterns")
    parser.add_argument("--exclude_patterns", type=str, nargs="*", default=None, help="LoRA module exclude patterns")
    parser.add_argument(
        "--save_merged_model",
        type=str,
        default=None,
        help="Save merged model to path. If specified, no inference will be performed.",
    )

    # inference
    parser.add_argument(
        "--prompt",
        type=str,
        default=None,
        help="prompt for generation. If `;;;` is used, it will be split into sections. Example: `section_index:prompt` or "
        "`section_index:prompt;;;section_index:prompt;;;...`, section_index can be `0` or `-1` or `0-2`, `-1` means last section, `0-2` means from 0 to 2 (inclusive).",
    )
    parser.add_argument(
        "--negative_prompt",
        type=str,
        default=None,
        help="negative prompt for generation, default is empty string. should not change.",
    )
    parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size, height and width")
    parser.add_argument("--video_seconds", type=float, default=5.0, help="video length, Default is 5.0 seconds")
    parser.add_argument("--fps", type=int, default=30, help="video fps, Default is 30")
    parser.add_argument("--infer_steps", type=int, default=25, help="number of inference steps, Default is 25")
    parser.add_argument("--save_path", type=str, required=True, help="path to save generated video")
    parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
    # parser.add_argument(
    #     "--cpu_noise", action="store_true", help="Use CPU to generate noise (compatible with ComfyUI). Default is False."
    # )
    parser.add_argument("--latent_window_size", type=int, default=9, help="latent window size, default is 9. should not change.")
    parser.add_argument(
        "--embedded_cfg_scale", type=float, default=10.0, help="Embeded CFG scale (distilled CFG Scale), default is 10.0"
    )
    parser.add_argument(
        "--guidance_scale",
        type=float,
        default=1.0,
        help="Guidance scale for classifier free guidance. Default is 1.0, should not change.",
    )
    parser.add_argument("--guidance_rescale", type=float, default=0.0, help="CFG Re-scale, default is 0.0. Should not change.")
    # parser.add_argument("--video_path", type=str, default=None, help="path to video for video2video inference")
    parser.add_argument("--image_path", type=str, default=None, help="path to image for image2video inference")
    parser.add_argument("--end_image_path", type=str, default=None, help="path to end image for image2video inference")
    # parser.add_argument(
    #     "--control_path",
    #     type=str,
    #     default=None,
    #     help="path to control video for inference with controlnet. video file or directory with images",
    # )
    # parser.add_argument("--trim_tail_frames", type=int, default=0, help="trim tail N frames from the video before saving")

    # # Flow Matching
    # parser.add_argument(
    #     "--flow_shift",
    #     type=float,
    #     default=None,
    #     help="Shift factor for flow matching schedulers. Default depends on task.",
    # )

    parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model")
    parser.add_argument("--fp8_scaled", action="store_true", help="use scaled fp8 for DiT, only for fp8")
    # parser.add_argument("--fp8_fast", action="store_true", help="Enable fast FP8 arithmetic (RTX 4XXX+), only for fp8_scaled")
    parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
    parser.add_argument(
        "--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU"
    )
    parser.add_argument(
        "--attn_mode",
        type=str,
        default="torch",
        choices=["flash", "torch", "sageattn", "xformers", "sdpa"],  #  "flash2", "flash3",
        help="attention mode",
    )
    parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
    parser.add_argument(
        "--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
    )
    parser.add_argument("--bulk_decode", action="store_true", help="decode all frames at once")
    parser.add_argument("--blocks_to_swap", type=int, default=0, help="number of blocks to swap in the model")
    parser.add_argument(
        "--output_type", type=str, default="video", choices=["video", "images", "latent", "both"], help="output type"
    )
    parser.add_argument("--no_metadata", action="store_true", help="do not save metadata")
    parser.add_argument("--latent_path", type=str, nargs="*", default=None, help="path to latent for decode. no inference")
    parser.add_argument("--lycoris", action="store_true", help="use lycoris for inference")
    # parser.add_argument("--compile", action="store_true", help="Enable torch.compile")
    # parser.add_argument(
    #     "--compile_args",
    #     nargs=4,
    #     metavar=("BACKEND", "MODE", "DYNAMIC", "FULLGRAPH"),
    #     default=["inductor", "max-autotune-no-cudagraphs", "False", "False"],
    #     help="Torch.compile settings",
    # )

    # New arguments for batch and interactive modes
    parser.add_argument("--from_file", type=str, default=None, help="Read prompts from a file")
    parser.add_argument("--interactive", action="store_true", help="Interactive mode: read prompts from console")

    args = parser.parse_args()

    # Validate arguments
    if args.from_file and args.interactive:
        raise ValueError("Cannot use both --from_file and --interactive at the same time")

    if args.prompt is None and not args.from_file and not args.interactive:
        raise ValueError("Either --prompt, --from_file or --interactive must be specified")

    return args


def parse_prompt_line(line: str) -> Dict[str, Any]:
    """Parse a prompt line into a dictionary of argument overrides

    Args:
        line: Prompt line with options

    Returns:
        Dict[str, Any]: Dictionary of argument overrides
    """
    # TODO common function with hv_train_network.line_to_prompt_dict
    parts = line.split(" --")
    prompt = parts[0].strip()

    # Create dictionary of overrides
    overrides = {"prompt": prompt}

    for part in parts[1:]:
        if not part.strip():
            continue
        option_parts = part.split(" ", 1)
        option = option_parts[0].strip()
        value = option_parts[1].strip() if len(option_parts) > 1 else ""

        # Map options to argument names
        if option == "w":
            overrides["video_size_width"] = int(value)
        elif option == "h":
            overrides["video_size_height"] = int(value)
        elif option == "f":
            overrides["video_seconds"] = float(value)
        elif option == "d":
            overrides["seed"] = int(value)
        elif option == "s":
            overrides["infer_steps"] = int(value)
        elif option == "g" or option == "l":
            overrides["guidance_scale"] = float(value)
        # elif option == "fs":
        #     overrides["flow_shift"] = float(value)
        elif option == "i":
            overrides["image_path"] = value
        elif option == "cn":
            overrides["control_path"] = value
        elif option == "n":
            overrides["negative_prompt"] = value

    return overrides


def apply_overrides(args: argparse.Namespace, overrides: Dict[str, Any]) -> argparse.Namespace:
    """Apply overrides to args

    Args:
        args: Original arguments
        overrides: Dictionary of overrides

    Returns:
        argparse.Namespace: New arguments with overrides applied
    """
    args_copy = copy.deepcopy(args)

    for key, value in overrides.items():
        if key == "video_size_width":
            args_copy.video_size[1] = value
        elif key == "video_size_height":
            args_copy.video_size[0] = value
        else:
            setattr(args_copy, key, value)

    return args_copy


def check_inputs(args: argparse.Namespace) -> Tuple[int, int, int]:
    """Validate video size and length

    Args:
        args: command line arguments

    Returns:
        Tuple[int, int, float]: (height, width, video_seconds)
    """
    height = args.video_size[0]
    width = args.video_size[1]

    video_seconds = args.video_seconds

    if height % 8 != 0 or width % 8 != 0:
        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

    return height, width, video_seconds


# region DiT model


def load_dit_model(args: argparse.Namespace, device: torch.device) -> HunyuanVideoTransformer3DModelPacked:
    """load DiT model

    Args:
        args: command line arguments
        device: device to use
        dit_dtype: data type for the model
        dit_weight_dtype: data type for the model weights. None for as-is

    Returns:
        HunyuanVideoTransformer3DModelPacked: DiT model
    """
    loading_device = "cpu"
    if args.blocks_to_swap == 0 and not args.fp8_scaled and args.lora_weight is None:
        loading_device = device

    # do not fp8 optimize because we will merge LoRA weights
    model = load_packed_model(device, args.dit, args.attn_mode, loading_device)
    return model


def optimize_model(model: HunyuanVideoTransformer3DModelPacked, args: argparse.Namespace, device: torch.device) -> None:
    """optimize the model (FP8 conversion, device move etc.)

    Args:
        model: dit model
        args: command line arguments
        device: device to use
    """
    if args.fp8_scaled:
        # load state dict as-is and optimize to fp8
        state_dict = model.state_dict()

        # if no blocks to swap, we can move the weights to GPU after optimization on GPU (omit redundant CPU->GPU copy)
        move_to_device = args.blocks_to_swap == 0  # if blocks_to_swap > 0, we will keep the model on CPU
        state_dict = model.fp8_optimization(state_dict, device, move_to_device, use_scaled_mm=False)  # args.fp8_fast)

        info = model.load_state_dict(state_dict, strict=True, assign=True)
        logger.info(f"Loaded FP8 optimized weights: {info}")

        if args.blocks_to_swap == 0:
            model.to(device)  # make sure all parameters are on the right device (e.g. RoPE etc.)
    else:
        # simple cast to dit_dtype
        target_dtype = None  # load as-is (dit_weight_dtype == dtype of the weights in state_dict)
        target_device = None

        if args.fp8:
            target_dtype = torch.float8e4m3fn

        if args.blocks_to_swap == 0:
            logger.info(f"Move model to device: {device}")
            target_device = device

        if target_device is not None and target_dtype is not None:
            model.to(target_device, target_dtype)  # move and cast  at the same time. this reduces redundant copy operations

    # if args.compile:
    #     compile_backend, compile_mode, compile_dynamic, compile_fullgraph = args.compile_args
    #     logger.info(
    #         f"Torch Compiling[Backend: {compile_backend}; Mode: {compile_mode}; Dynamic: {compile_dynamic}; Fullgraph: {compile_fullgraph}]"
    #     )
    #     torch._dynamo.config.cache_size_limit = 32
    #     for i in range(len(model.blocks)):
    #         model.blocks[i] = torch.compile(
    #             model.blocks[i],
    #             backend=compile_backend,
    #             mode=compile_mode,
    #             dynamic=compile_dynamic.lower() in "true",
    #             fullgraph=compile_fullgraph.lower() in "true",
    #         )

    if args.blocks_to_swap > 0:
        logger.info(f"Enable swap {args.blocks_to_swap} blocks to CPU from device: {device}")
        model.enable_block_swap(args.blocks_to_swap, device, supports_backward=False)
        model.move_to_device_except_swap_blocks(device)
        model.prepare_block_swap_before_forward()
    else:
        # make sure the model is on the right device
        model.to(device)

    model.eval().requires_grad_(False)
    clean_memory_on_device(device)


# endregion


def decode_latent(
    latent_window_size: int,
    total_latent_sections: int,
    bulk_decode: bool,
    vae: AutoencoderKLCausal3D,
    latent: torch.Tensor,
    device: torch.device,
) -> torch.Tensor:
    logger.info(f"Decoding video...")
    if latent.ndim == 4:
        latent = latent.unsqueeze(0)  # add batch dimension

    vae.to(device)
    if not bulk_decode:
        latent_window_size = latent_window_size  # default is 9
        # total_latent_sections = (args.video_seconds * 30) / (latent_window_size * 4)
        # total_latent_sections = int(max(round(total_latent_sections), 1))
        num_frames = latent_window_size * 4 - 3

        latents_to_decode = []
        latent_frame_index = 0
        for i in range(total_latent_sections - 1, -1, -1):
            is_last_section = i == total_latent_sections - 1
            generated_latent_frames = (num_frames + 3) // 4 + (1 if is_last_section else 0)
            section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)

            section_latent = latent[:, :, latent_frame_index : latent_frame_index + section_latent_frames, :, :]
            latents_to_decode.append(section_latent)

            latent_frame_index += generated_latent_frames

        latents_to_decode = latents_to_decode[::-1]  # reverse the order of latents to decode

        history_pixels = None
        for latent in tqdm(latents_to_decode):
            if history_pixels is None:
                history_pixels = hunyuan.vae_decode(latent, vae).cpu()
            else:
                overlapped_frames = latent_window_size * 4 - 3
                current_pixels = hunyuan.vae_decode(latent, vae).cpu()
                history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
            clean_memory_on_device(device)
    else:
        # bulk decode
        logger.info(f"Bulk decoding")
        history_pixels = hunyuan.vae_decode(latent, vae).cpu()
    vae.to("cpu")

    print(f"Decoded. Pixel shape {history_pixels.shape}")
    return history_pixels[0]  # remove batch dimension


def prepare_i2v_inputs(
    args: argparse.Namespace,
    device: torch.device,
    vae: AutoencoderKLCausal3D,
    encoded_context: Optional[Dict] = None,
    encoded_context_n: Optional[Dict] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
    """Prepare inputs for I2V

    Args:
        args: command line arguments
        config: model configuration
        device: device to use
        vae: VAE model, used for image encoding
        encoded_context: Pre-encoded text context

    Returns:
        Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
            (noise, context, context_null, y, (arg_c, arg_null))
    """

    height, width, video_seconds = check_inputs(args)

    # prepare image
    def preprocess_image(image_path: str):
        image = Image.open(image_path).convert("RGB")

        image_np = np.array(image)  # PIL to numpy, HWC

        image_np = image_video_dataset.resize_image_to_bucket(image_np, (width, height))
        image_tensor = torch.from_numpy(image_np).float() / 127.5 - 1.0  # -1 to 1.0, HWC
        image_tensor = image_tensor.permute(2, 0, 1)[None, :, None]  # HWC -> CHW -> NCFHW, N=1, C=3, F=1
        return image_tensor, image_np

    img_tensor, img_np = preprocess_image(args.image_path)
    if args.end_image_path is not None:
        end_img_tensor, end_img_np = preprocess_image(args.end_image_path)
    else:
        end_img_tensor, end_img_np = None, None

    # configure negative prompt
    n_prompt = args.negative_prompt if args.negative_prompt else ""

    if encoded_context is None:
        # load text encoder
        tokenizer1, text_encoder1 = load_text_encoder1(args, args.fp8_llm, device)
        tokenizer2, text_encoder2 = load_text_encoder2(args)
        text_encoder2.to(device)

        # parse section prompts
        section_prompts = {}
        if ";;;" in args.prompt:
            section_prompt_strs = args.prompt.split(";;;")
            for section_prompt_str in section_prompt_strs:
                if ":" not in section_prompt_str:
                    start = end = 0
                    prompt_str = section_prompt_str.strip()
                else:
                    index_str, prompt_str = section_prompt_str.split(":", 1)
                    index_str = index_str.strip()
                    prompt_str = prompt_str.strip()

                    m = re.match(r"^(-?\d+)(-\d+)?$", index_str)
                    if m:
                        start = int(m.group(1))
                        end = int(m.group(2)[1:]) if m.group(2) is not None else start
                    else:
                        start = end = 0
                        prompt_str = section_prompt_str.strip()
                for i in range(start, end + 1):
                    section_prompts[i] = prompt_str
        else:
            section_prompts[0] = args.prompt

        # assert 0 in section_prompts, "Section prompts must contain section 0"
        if 0 not in section_prompts:
            # use smallest section index. prefer positive index over negative index
            # if all section indices are negative, use the smallest negative index
            indices = list(section_prompts.keys())
            if all(i < 0 for i in indices):
                section_index = min(indices)
            else:
                section_index = min(i for i in indices if i >= 0)
            section_prompts[0] = section_prompts[section_index]
        print(section_prompts)

        logger.info(f"Encoding prompt")
        llama_vecs = {}
        llama_attention_masks = {}
        clip_l_poolers = {}
        with torch.autocast(device_type=device.type, dtype=text_encoder1.dtype), torch.no_grad():
            for index, prompt in section_prompts.items():
                llama_vec, clip_l_pooler = hunyuan.encode_prompt_conds(prompt, text_encoder1, text_encoder2, tokenizer1, tokenizer2)
                llama_vec = llama_vec.cpu()
                clip_l_pooler = clip_l_pooler.cpu()

                llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)

                llama_vecs[index] = llama_vec
                llama_attention_masks[index] = llama_attention_mask
                clip_l_poolers[index] = clip_l_pooler

        if args.guidance_scale == 1.0:
            llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vecs[0]), torch.zeros_like(clip_l_poolers[0])
        else:
            with torch.autocast(device_type=device.type, dtype=text_encoder1.dtype), torch.no_grad():
                llama_vec_n, clip_l_pooler_n = hunyuan.encode_prompt_conds(
                    n_prompt, text_encoder1, text_encoder2, tokenizer1, tokenizer2
                )
                llama_vec_n = llama_vec_n.cpu()
                clip_l_pooler_n = clip_l_pooler_n.cpu()

        llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)

        # free text encoder and clean memory
        del text_encoder1, text_encoder2, tokenizer1, tokenizer2
        clean_memory_on_device(device)

        # load image encoder
        feature_extractor, image_encoder = load_image_encoders(args)
        image_encoder.to(device)

        # encode image with image encoder
        with torch.no_grad():
            image_encoder_output = hf_clip_vision_encode(img_np, feature_extractor, image_encoder)
        image_encoder_last_hidden_state = image_encoder_output.last_hidden_state.cpu()

        if end_img_np is not None:
            with torch.no_grad():
                end_image_encoder_output = hf_clip_vision_encode(end_img_np, feature_extractor, image_encoder)
            end_image_encoder_last_hidden_state = end_image_encoder_output.last_hidden_state.cpu()
        else:
            end_image_encoder_last_hidden_state = None

        # free image encoder and clean memory
        del image_encoder, feature_extractor
        clean_memory_on_device(device)
    else:
        # Use pre-encoded context
        llama_vecs = encoded_context["llama_vecs"]
        llama_attention_masks = encoded_context["llama_attention_masks"]
        clip_l_poolers = encoded_context["clip_l_poolers"]
        llama_vec_n = encoded_context_n["llama_vec"]
        llama_attention_mask_n = encoded_context_n["llama_attention_mask"]
        clip_l_pooler_n = encoded_context_n["clip_l_pooler"]
        image_encoder_last_hidden_state = encoded_context["image_encoder_last_hidden_state"]

    # # end frame image
    # if args.end_image_path is not None:
    #     end_img = Image.open(args.end_image_path).convert("RGB")
    #     end_img_cv2 = np.array(end_img)  # PIL to numpy
    # else:
    #     end_img = None
    #     end_img_cv2 = None
    # has_end_image = end_img is not None

    # VAE encoding
    logger.info(f"Encoding image to latent space")
    vae.to(device)
    start_latent = hunyuan.vae_encode(img_tensor, vae).cpu()
    if end_img_tensor is not None:
        end_latent = hunyuan.vae_encode(end_img_tensor, vae).cpu()
    else:
        end_latent = None
    vae.to("cpu")  # move VAE to CPU to save memory
    clean_memory_on_device(device)

    # prepare model input arguments
    arg_c = {}
    for index in llama_vecs.keys():
        llama_vec = llama_vecs[index]
        llama_attention_mask = llama_attention_masks[index]
        clip_l_pooler = clip_l_poolers[index]
        arg_c_i = {
            "llama_vec": llama_vec,
            "llama_attention_mask": llama_attention_mask,
            "clip_l_pooler": clip_l_pooler,
            "image_encoder_last_hidden_state": image_encoder_last_hidden_state,
            "end_image_encoder_last_hidden_state": end_image_encoder_last_hidden_state,
            "prompt": section_prompts[index],  # for debugging
        }
        arg_c[index] = arg_c_i

    arg_null = {
        "llama_vec": llama_vec_n,
        "llama_attention_mask": llama_attention_mask_n,
        "clip_l_pooler": clip_l_pooler_n,
        "image_encoder_last_hidden_state": image_encoder_last_hidden_state,
        "end_image_encoder_last_hidden_state": end_image_encoder_last_hidden_state,
    }

    return height, width, video_seconds, start_latent, end_latent, arg_c, arg_null


# def setup_scheduler(args: argparse.Namespace, config, device: torch.device) -> Tuple[Any, torch.Tensor]:
#     """setup scheduler for sampling

#     Args:
#         args: command line arguments
#         config: model configuration
#         device: device to use

#     Returns:
#         Tuple[Any, torch.Tensor]: (scheduler, timesteps)
#     """
#     if args.sample_solver == "unipc":
#         scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False)
#         scheduler.set_timesteps(args.infer_steps, device=device, shift=args.flow_shift)
#         timesteps = scheduler.timesteps
#     elif args.sample_solver == "dpm++":
#         scheduler = FlowDPMSolverMultistepScheduler(
#             num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False
#         )
#         sampling_sigmas = get_sampling_sigmas(args.infer_steps, args.flow_shift)
#         timesteps, _ = retrieve_timesteps(scheduler, device=device, sigmas=sampling_sigmas)
#     elif args.sample_solver == "vanilla":
#         scheduler = FlowMatchDiscreteScheduler(num_train_timesteps=config.num_train_timesteps, shift=args.flow_shift)
#         scheduler.set_timesteps(args.infer_steps, device=device)
#         timesteps = scheduler.timesteps

#         # FlowMatchDiscreteScheduler does not support generator argument in step method
#         org_step = scheduler.step

#         def step_wrapper(
#             model_output: torch.Tensor,
#             timestep: Union[int, torch.Tensor],
#             sample: torch.Tensor,
#             return_dict: bool = True,
#             generator=None,
#         ):
#             return org_step(model_output, timestep, sample, return_dict=return_dict)

#         scheduler.step = step_wrapper
#     else:
#         raise NotImplementedError("Unsupported solver.")

#     return scheduler, timesteps


def generate(args: argparse.Namespace, gen_settings: GenerationSettings, shared_models: Optional[Dict] = None) -> torch.Tensor:
    """main function for generation

    Args:
        args: command line arguments
        shared_models: dictionary containing pre-loaded models and encoded data

    Returns:
        torch.Tensor: generated latent
    """
    device, dit_weight_dtype = (gen_settings.device, gen_settings.dit_weight_dtype)

    # prepare seed
    seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
    args.seed = seed  # set seed to args for saving

    # Check if we have shared models
    if shared_models is not None:
        # Use shared models and encoded data
        vae = shared_models.get("vae")
        model = shared_models.get("model")
        encoded_context = shared_models.get("encoded_contexts", {}).get(args.prompt)
        n_prompt = args.negative_prompt if args.negative_prompt else ""
        encoded_context_n = shared_models.get("encoded_contexts", {}).get(n_prompt)

        height, width, video_seconds, start_latent, end_latent, context, context_null = prepare_i2v_inputs(
            args, device, vae, encoded_context, encoded_context_n
        )
    else:
        # prepare inputs without shared models
        vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device)
        height, width, video_seconds, start_latent, end_latent, context, context_null = prepare_i2v_inputs(args, device, vae)

        # load DiT model
        model = load_dit_model(args, device)

        # merge LoRA weights
        if args.lora_weight is not None and len(args.lora_weight) > 0:
            merge_lora_weights(lora_framepack, model, args, device)  # ugly hack to common merge_lora_weights function
            # if we only want to save the model, we can skip the rest
            if args.save_merged_model:
                return None

        # optimize model: fp8 conversion, block swap etc.
        optimize_model(model, args, device)

    # sampling
    latent_window_size = args.latent_window_size  # default is 9
    # ex: (5s * 30fps) / (9 * 4) = 4.16 -> 4 sections, 60s -> 1800 / 36 = 50 sections
    total_latent_sections = (video_seconds * 30) / (latent_window_size * 4)
    total_latent_sections = int(max(round(total_latent_sections), 1))

    # set random generator
    seed_g = torch.Generator(device="cpu")
    seed_g.manual_seed(seed)
    num_frames = latent_window_size * 4 - 3

    logger.info(
        f"Video size: {height}x{width}@{video_seconds} (HxW@seconds), fps: {args.fps}, "
        f"infer_steps: {args.infer_steps}, frames per generation: {num_frames}"
    )

    history_latents = torch.zeros((1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32)
    # history_pixels = None
    total_generated_latent_frames = 0

    latent_paddings = reversed(range(total_latent_sections))

    if total_latent_sections > 4:
        # In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
        # items looks better than expanding it when total_latent_sections > 4
        # One can try to remove below trick and just
        # use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
        # 4 sections: 3, 2, 1, 0. 50 sections: 3, 2, 2, ... 2, 1, 0
        latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]

    for section_index_reverse, latent_padding in enumerate(latent_paddings):
        section_index = total_latent_sections - 1 - section_index_reverse

        is_last_section = latent_padding == 0
        is_first_section = section_index_reverse == 0
        latent_padding_size = latent_padding * latent_window_size

        logger.info(f"latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}")

        reference_start_latent = start_latent
        apply_end_image = args.end_image_path is not None and is_first_section
        if apply_end_image:
            latent_padding_size = 0
            reference_start_latent = end_latent
            logger.info(f"Apply experimental end image, latent_padding_size = {latent_padding_size}")

        # sum([1, 3, 9, 1, 2, 16]) = 32
        indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
        (
            clean_latent_indices_pre,
            blank_indices,
            latent_indices,
            clean_latent_indices_post,
            clean_latent_2x_indices,
            clean_latent_4x_indices,
        ) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
        clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)

        clean_latents_pre = reference_start_latent.to(history_latents)
        clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, : 1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
        clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)

        # if use_teacache:
        #     transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
        # else:
        #     transformer.initialize_teacache(enable_teacache=False)

        section_index_from_last = -(section_index_reverse + 1)  # -1, -2 ...
        if section_index_from_last in context:
            prompt_index = section_index_from_last
        elif section_index in context:
            prompt_index = section_index
        else:
            prompt_index = 0
        context_for_index = context[prompt_index]
        # if args.section_prompts is not None:
        logger.info(f"Section {section_index}: {context_for_index['prompt']}")

        llama_vec = context_for_index["llama_vec"].to(device, dtype=torch.bfloat16)
        llama_attention_mask = context_for_index["llama_attention_mask"].to(device)
        clip_l_pooler = context_for_index["clip_l_pooler"].to(device, dtype=torch.bfloat16)

        if not apply_end_image:
            image_encoder_last_hidden_state = context_for_index["image_encoder_last_hidden_state"].to(device, dtype=torch.bfloat16)
        else:
            image_encoder_last_hidden_state = context_for_index["end_image_encoder_last_hidden_state"].to(
                device, dtype=torch.bfloat16
            )

        llama_vec_n = context_null["llama_vec"].to(device, dtype=torch.bfloat16)
        llama_attention_mask_n = context_null["llama_attention_mask"].to(device)
        clip_l_pooler_n = context_null["clip_l_pooler"].to(device, dtype=torch.bfloat16)

        generated_latents = sample_hunyuan(
            transformer=model,
            sampler=args.sample_solver,
            width=width,
            height=height,
            frames=num_frames,
            real_guidance_scale=args.guidance_scale,
            distilled_guidance_scale=args.embedded_cfg_scale,
            guidance_rescale=args.guidance_rescale,
            # shift=3.0,
            num_inference_steps=args.infer_steps,
            generator=seed_g,
            prompt_embeds=llama_vec,
            prompt_embeds_mask=llama_attention_mask,
            prompt_poolers=clip_l_pooler,
            negative_prompt_embeds=llama_vec_n,
            negative_prompt_embeds_mask=llama_attention_mask_n,
            negative_prompt_poolers=clip_l_pooler_n,
            device=device,
            dtype=torch.bfloat16,
            image_embeddings=image_encoder_last_hidden_state,
            latent_indices=latent_indices,
            clean_latents=clean_latents,
            clean_latent_indices=clean_latent_indices,
            clean_latents_2x=clean_latents_2x,
            clean_latent_2x_indices=clean_latent_2x_indices,
            clean_latents_4x=clean_latents_4x,
            clean_latent_4x_indices=clean_latent_4x_indices,
        )

        if is_last_section:
            generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)

        total_generated_latent_frames += int(generated_latents.shape[2])
        history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)

        real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]

        logger.info(f"Generated. Latent shape {real_history_latents.shape}")

        # # TODO support saving intermediate video
        # clean_memory_on_device(device)
        # vae.to(device)
        # if history_pixels is None:
        #     history_pixels = hunyuan.vae_decode(real_history_latents, vae).cpu()
        # else:
        #     section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
        #     overlapped_frames = latent_window_size * 4 - 3
        #     current_pixels = hunyuan.vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
        #     history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
        # vae.to("cpu")
        # # if not is_last_section:
        # #     # save intermediate video
        # #     save_video(history_pixels[0], args, total_generated_latent_frames)
        # print(f"Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}")

    # Only clean up shared models if they were created within this function
    if shared_models is None:
        # free memory
        del model
        # del scheduler
        synchronize_device(device)

    # wait for 5 seconds until block swap is done
    logger.info("Waiting for 5 seconds to finish block swap")
    time.sleep(5)

    gc.collect()
    clean_memory_on_device(device)

    return vae, real_history_latents


def save_latent(latent: torch.Tensor, args: argparse.Namespace, height: int, width: int) -> str:
    """Save latent to file

    Args:
        latent: Latent tensor
        args: command line arguments
        height: height of frame
        width: width of frame

    Returns:
        str: Path to saved latent file
    """
    save_path = args.save_path
    os.makedirs(save_path, exist_ok=True)
    time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")

    seed = args.seed
    video_seconds = args.video_seconds
    latent_path = f"{save_path}/{time_flag}_{seed}_latent.safetensors"

    if args.no_metadata:
        metadata = None
    else:
        metadata = {
            "seeds": f"{seed}",
            "prompt": f"{args.prompt}",
            "height": f"{height}",
            "width": f"{width}",
            "video_seconds": f"{video_seconds}",
            "infer_steps": f"{args.infer_steps}",
            "guidance_scale": f"{args.guidance_scale}",
            "latent_window_size": f"{args.latent_window_size}",
            "embedded_cfg_scale": f"{args.embedded_cfg_scale}",
            "guidance_rescale": f"{args.guidance_rescale}",
            "sample_solver": f"{args.sample_solver}",
            "latent_window_size": f"{args.latent_window_size}",
            "fps": f"{args.fps}",
        }
        if args.negative_prompt is not None:
            metadata["negative_prompt"] = f"{args.negative_prompt}"

    sd = {"latent": latent.contiguous()}
    save_file(sd, latent_path, metadata=metadata)
    logger.info(f"Latent saved to: {latent_path}")

    return latent_path


def save_video(
    video: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None, latent_frames: Optional[int] = None
) -> str:
    """Save video to file

    Args:
        video: Video tensor
        args: command line arguments
        original_base_name: Original base name (if latents are loaded from files)

    Returns:
        str: Path to saved video file
    """
    save_path = args.save_path
    os.makedirs(save_path, exist_ok=True)
    time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")

    seed = args.seed
    original_name = "" if original_base_name is None else f"_{original_base_name}"
    latent_frames = "" if latent_frames is None else f"_{latent_frames}"
    video_path = f"{save_path}/{time_flag}_{seed}{original_name}{latent_frames}.mp4"

    video = video.unsqueeze(0)
    save_videos_grid(video, video_path, fps=args.fps, rescale=True)
    logger.info(f"Video saved to: {video_path}")

    return video_path


def save_images(sample: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None) -> str:
    """Save images to directory

    Args:
        sample: Video tensor
        args: command line arguments
        original_base_name: Original base name (if latents are loaded from files)

    Returns:
        str: Path to saved images directory
    """
    save_path = args.save_path
    os.makedirs(save_path, exist_ok=True)
    time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")

    seed = args.seed
    original_name = "" if original_base_name is None else f"_{original_base_name}"
    image_name = f"{time_flag}_{seed}{original_name}"
    sample = sample.unsqueeze(0)
    save_images_grid(sample, save_path, image_name, rescale=True)
    logger.info(f"Sample images saved to: {save_path}/{image_name}")

    return f"{save_path}/{image_name}"


def save_output(
    args: argparse.Namespace,
    vae: AutoencoderKLCausal3D,
    latent: torch.Tensor,
    device: torch.device,
    original_base_names: Optional[List[str]] = None,
) -> None:
    """save output

    Args:
        args: command line arguments
        vae: VAE model
        latent: latent tensor
        device: device to use
        original_base_names: original base names (if latents are loaded from files)
    """
    height, width = latent.shape[-2], latent.shape[-1]  # BCTHW
    height *= 8
    width *= 8
    # print(f"Saving output. Latent shape {latent.shape}; pixel shape {height}x{width}")
    if args.output_type == "latent" or args.output_type == "both":
        # save latent
        save_latent(latent, args, height, width)
    if args.output_type == "latent":
        return

    total_latent_sections = (args.video_seconds * 30) / (args.latent_window_size * 4)
    total_latent_sections = int(max(round(total_latent_sections), 1))
    video = decode_latent(args.latent_window_size, total_latent_sections, args.bulk_decode, vae, latent, device)

    if args.output_type == "video" or args.output_type == "both":
        # save video
        original_name = "" if original_base_names is None else f"_{original_base_names[0]}"
        save_video(video, args, original_name)

    elif args.output_type == "images":
        # save images
        original_name = "" if original_base_names is None else f"_{original_base_names[0]}"
        save_images(video, args, original_name)


def preprocess_prompts_for_batch(prompt_lines: List[str], base_args: argparse.Namespace) -> List[Dict]:
    """Process multiple prompts for batch mode

    Args:
        prompt_lines: List of prompt lines
        base_args: Base command line arguments

    Returns:
        List[Dict]: List of prompt data dictionaries
    """
    prompts_data = []

    for line in prompt_lines:
        line = line.strip()
        if not line or line.startswith("#"):  # Skip empty lines and comments
            continue

        # Parse prompt line and create override dictionary
        prompt_data = parse_prompt_line(line)
        logger.info(f"Parsed prompt data: {prompt_data}")
        prompts_data.append(prompt_data)

    return prompts_data


def get_generation_settings(args: argparse.Namespace) -> GenerationSettings:
    device = torch.device(args.device)

    dit_weight_dtype = None  # default
    if args.fp8_scaled:
        dit_weight_dtype = None  # various precision weights, so don't cast to specific dtype
    elif args.fp8:
        dit_weight_dtype = torch.float8_e4m3fn

    logger.info(f"Using device: {device}, DiT weight weight precision: {dit_weight_dtype}")

    gen_settings = GenerationSettings(device=device, dit_weight_dtype=dit_weight_dtype)
    return gen_settings


def main():
    # Parse arguments
    args = parse_args()

    # Check if latents are provided
    latents_mode = args.latent_path is not None and len(args.latent_path) > 0

    # Set device
    device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
    device = torch.device(device)
    logger.info(f"Using device: {device}")
    args.device = device

    if latents_mode:
        # Original latent decode mode
        original_base_names = []
        latents_list = []
        seeds = []

        assert len(args.latent_path) == 1, "Only one latent path is supported for now"

        for latent_path in args.latent_path:
            original_base_names.append(os.path.splitext(os.path.basename(latent_path))[0])
            seed = 0

            if os.path.splitext(latent_path)[1] != ".safetensors":
                latents = torch.load(latent_path, map_location="cpu")
            else:
                latents = load_file(latent_path)["latent"]
                with safe_open(latent_path, framework="pt") as f:
                    metadata = f.metadata()
                if metadata is None:
                    metadata = {}
                logger.info(f"Loaded metadata: {metadata}")

                if "seeds" in metadata:
                    seed = int(metadata["seeds"])
                if "height" in metadata and "width" in metadata:
                    height = int(metadata["height"])
                    width = int(metadata["width"])
                    args.video_size = [height, width]
                if "video_seconds" in metadata:
                    args.video_seconds = float(metadata["video_seconds"])

            seeds.append(seed)
            logger.info(f"Loaded latent from {latent_path}. Shape: {latents.shape}")

            if latents.ndim == 5:  # [BCTHW]
                latents = latents.squeeze(0)  # [CTHW]

            latents_list.append(latents)

        latent = torch.stack(latents_list, dim=0)  # [N, ...], must be same shape

        args.seed = seeds[0]

        vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device)
        save_output(args, vae, latent, device, original_base_names)

    elif args.from_file:
        # Batch mode from file

        # Read prompts from file
        with open(args.from_file, "r", encoding="utf-8") as f:
            prompt_lines = f.readlines()

        # Process prompts
        prompts_data = preprocess_prompts_for_batch(prompt_lines, args)
        # process_batch_prompts(prompts_data, args)
        raise NotImplementedError("Batch mode is not implemented yet.")

    elif args.interactive:
        # Interactive mode
        # process_interactive(args)
        raise NotImplementedError("Interactive mode is not implemented yet.")

    else:
        # Single prompt mode (original behavior)

        # Generate latent
        gen_settings = get_generation_settings(args)
        vae, latent = generate(args, gen_settings)
        # print(f"Generated latent shape: {latent.shape}")

        # # Save latent and video
        # if args.save_merged_model:
        #     return

        save_output(args, vae, latent[0], device)

    logger.info("Done!")


if __name__ == "__main__":
    main()