File size: 46,654 Bytes
ef46f0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 |
import argparse
from datetime import datetime
import gc
import json
import random
import os
import re
import time
import math
import copy
from typing import Tuple, Optional, List, Union, Any, Dict
import torch
from safetensors.torch import load_file, save_file
from safetensors import safe_open
from PIL import Image
import cv2
import numpy as np
import torchvision.transforms.functional as TF
from transformers import LlamaModel
from tqdm import tqdm
from networks import lora_framepack
from hunyuan_model.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
from frame_pack import hunyuan
from frame_pack.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked, load_packed_model
from frame_pack.utils import crop_or_pad_yield_mask, resize_and_center_crop, soft_append_bcthw
from frame_pack.bucket_tools import find_nearest_bucket
from frame_pack.clip_vision import hf_clip_vision_encode
from frame_pack.k_diffusion_hunyuan import sample_hunyuan
from dataset import image_video_dataset
try:
from lycoris.kohya import create_network_from_weights
except:
pass
from utils.device_utils import clean_memory_on_device
from hv_generate_video import save_images_grid, save_videos_grid, synchronize_device
from wan_generate_video import merge_lora_weights
from frame_pack.framepack_utils import load_vae, load_text_encoder1, load_text_encoder2, load_image_encoders
from dataset.image_video_dataset import load_video
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
class GenerationSettings:
def __init__(self, device: torch.device, dit_weight_dtype: Optional[torch.dtype] = None):
self.device = device
self.dit_weight_dtype = dit_weight_dtype
def parse_args() -> argparse.Namespace:
"""parse command line arguments"""
parser = argparse.ArgumentParser(description="Wan 2.1 inference script")
# WAN arguments
# parser.add_argument("--ckpt_dir", type=str, default=None, help="The path to the checkpoint directory (Wan 2.1 official).")
parser.add_argument(
"--sample_solver", type=str, default="unipc", choices=["unipc", "dpm++", "vanilla"], help="The solver used to sample."
)
parser.add_argument("--dit", type=str, default=None, help="DiT directory or path")
parser.add_argument("--vae", type=str, default=None, help="VAE directory or path")
parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory or path")
parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory or path")
parser.add_argument("--image_encoder", type=str, required=True, help="Image Encoder directory or path")
# LoRA
parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path")
parser.add_argument("--lora_multiplier", type=float, nargs="*", default=1.0, help="LoRA multiplier")
parser.add_argument("--include_patterns", type=str, nargs="*", default=None, help="LoRA module include patterns")
parser.add_argument("--exclude_patterns", type=str, nargs="*", default=None, help="LoRA module exclude patterns")
parser.add_argument(
"--save_merged_model",
type=str,
default=None,
help="Save merged model to path. If specified, no inference will be performed.",
)
# inference
parser.add_argument(
"--prompt",
type=str,
default=None,
help="prompt for generation. If `;;;` is used, it will be split into sections. Example: `section_index:prompt` or "
"`section_index:prompt;;;section_index:prompt;;;...`, section_index can be `0` or `-1` or `0-2`, `-1` means last section, `0-2` means from 0 to 2 (inclusive).",
)
parser.add_argument(
"--negative_prompt",
type=str,
default=None,
help="negative prompt for generation, default is empty string. should not change.",
)
parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size, height and width")
parser.add_argument("--video_seconds", type=float, default=5.0, help="video length, Default is 5.0 seconds")
parser.add_argument("--fps", type=int, default=30, help="video fps, Default is 30")
parser.add_argument("--infer_steps", type=int, default=25, help="number of inference steps, Default is 25")
parser.add_argument("--save_path", type=str, required=True, help="path to save generated video")
parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
# parser.add_argument(
# "--cpu_noise", action="store_true", help="Use CPU to generate noise (compatible with ComfyUI). Default is False."
# )
parser.add_argument("--latent_window_size", type=int, default=9, help="latent window size, default is 9. should not change.")
parser.add_argument(
"--embedded_cfg_scale", type=float, default=10.0, help="Embeded CFG scale (distilled CFG Scale), default is 10.0"
)
parser.add_argument(
"--guidance_scale",
type=float,
default=1.0,
help="Guidance scale for classifier free guidance. Default is 1.0, should not change.",
)
parser.add_argument("--guidance_rescale", type=float, default=0.0, help="CFG Re-scale, default is 0.0. Should not change.")
# parser.add_argument("--video_path", type=str, default=None, help="path to video for video2video inference")
parser.add_argument("--image_path", type=str, default=None, help="path to image for image2video inference")
parser.add_argument("--end_image_path", type=str, default=None, help="path to end image for image2video inference")
# parser.add_argument(
# "--control_path",
# type=str,
# default=None,
# help="path to control video for inference with controlnet. video file or directory with images",
# )
# parser.add_argument("--trim_tail_frames", type=int, default=0, help="trim tail N frames from the video before saving")
# # Flow Matching
# parser.add_argument(
# "--flow_shift",
# type=float,
# default=None,
# help="Shift factor for flow matching schedulers. Default depends on task.",
# )
parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model")
parser.add_argument("--fp8_scaled", action="store_true", help="use scaled fp8 for DiT, only for fp8")
# parser.add_argument("--fp8_fast", action="store_true", help="Enable fast FP8 arithmetic (RTX 4XXX+), only for fp8_scaled")
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
parser.add_argument(
"--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU"
)
parser.add_argument(
"--attn_mode",
type=str,
default="torch",
choices=["flash", "torch", "sageattn", "xformers", "sdpa"], # "flash2", "flash3",
help="attention mode",
)
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
parser.add_argument(
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
)
parser.add_argument("--bulk_decode", action="store_true", help="decode all frames at once")
parser.add_argument("--blocks_to_swap", type=int, default=0, help="number of blocks to swap in the model")
parser.add_argument(
"--output_type", type=str, default="video", choices=["video", "images", "latent", "both"], help="output type"
)
parser.add_argument("--no_metadata", action="store_true", help="do not save metadata")
parser.add_argument("--latent_path", type=str, nargs="*", default=None, help="path to latent for decode. no inference")
parser.add_argument("--lycoris", action="store_true", help="use lycoris for inference")
# parser.add_argument("--compile", action="store_true", help="Enable torch.compile")
# parser.add_argument(
# "--compile_args",
# nargs=4,
# metavar=("BACKEND", "MODE", "DYNAMIC", "FULLGRAPH"),
# default=["inductor", "max-autotune-no-cudagraphs", "False", "False"],
# help="Torch.compile settings",
# )
# New arguments for batch and interactive modes
parser.add_argument("--from_file", type=str, default=None, help="Read prompts from a file")
parser.add_argument("--interactive", action="store_true", help="Interactive mode: read prompts from console")
args = parser.parse_args()
# Validate arguments
if args.from_file and args.interactive:
raise ValueError("Cannot use both --from_file and --interactive at the same time")
if args.prompt is None and not args.from_file and not args.interactive:
raise ValueError("Either --prompt, --from_file or --interactive must be specified")
return args
def parse_prompt_line(line: str) -> Dict[str, Any]:
"""Parse a prompt line into a dictionary of argument overrides
Args:
line: Prompt line with options
Returns:
Dict[str, Any]: Dictionary of argument overrides
"""
# TODO common function with hv_train_network.line_to_prompt_dict
parts = line.split(" --")
prompt = parts[0].strip()
# Create dictionary of overrides
overrides = {"prompt": prompt}
for part in parts[1:]:
if not part.strip():
continue
option_parts = part.split(" ", 1)
option = option_parts[0].strip()
value = option_parts[1].strip() if len(option_parts) > 1 else ""
# Map options to argument names
if option == "w":
overrides["video_size_width"] = int(value)
elif option == "h":
overrides["video_size_height"] = int(value)
elif option == "f":
overrides["video_seconds"] = float(value)
elif option == "d":
overrides["seed"] = int(value)
elif option == "s":
overrides["infer_steps"] = int(value)
elif option == "g" or option == "l":
overrides["guidance_scale"] = float(value)
# elif option == "fs":
# overrides["flow_shift"] = float(value)
elif option == "i":
overrides["image_path"] = value
elif option == "cn":
overrides["control_path"] = value
elif option == "n":
overrides["negative_prompt"] = value
return overrides
def apply_overrides(args: argparse.Namespace, overrides: Dict[str, Any]) -> argparse.Namespace:
"""Apply overrides to args
Args:
args: Original arguments
overrides: Dictionary of overrides
Returns:
argparse.Namespace: New arguments with overrides applied
"""
args_copy = copy.deepcopy(args)
for key, value in overrides.items():
if key == "video_size_width":
args_copy.video_size[1] = value
elif key == "video_size_height":
args_copy.video_size[0] = value
else:
setattr(args_copy, key, value)
return args_copy
def check_inputs(args: argparse.Namespace) -> Tuple[int, int, int]:
"""Validate video size and length
Args:
args: command line arguments
Returns:
Tuple[int, int, float]: (height, width, video_seconds)
"""
height = args.video_size[0]
width = args.video_size[1]
video_seconds = args.video_seconds
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
return height, width, video_seconds
# region DiT model
def load_dit_model(args: argparse.Namespace, device: torch.device) -> HunyuanVideoTransformer3DModelPacked:
"""load DiT model
Args:
args: command line arguments
device: device to use
dit_dtype: data type for the model
dit_weight_dtype: data type for the model weights. None for as-is
Returns:
HunyuanVideoTransformer3DModelPacked: DiT model
"""
loading_device = "cpu"
if args.blocks_to_swap == 0 and not args.fp8_scaled and args.lora_weight is None:
loading_device = device
# do not fp8 optimize because we will merge LoRA weights
model = load_packed_model(device, args.dit, args.attn_mode, loading_device)
return model
def optimize_model(model: HunyuanVideoTransformer3DModelPacked, args: argparse.Namespace, device: torch.device) -> None:
"""optimize the model (FP8 conversion, device move etc.)
Args:
model: dit model
args: command line arguments
device: device to use
"""
if args.fp8_scaled:
# load state dict as-is and optimize to fp8
state_dict = model.state_dict()
# if no blocks to swap, we can move the weights to GPU after optimization on GPU (omit redundant CPU->GPU copy)
move_to_device = args.blocks_to_swap == 0 # if blocks_to_swap > 0, we will keep the model on CPU
state_dict = model.fp8_optimization(state_dict, device, move_to_device, use_scaled_mm=False) # args.fp8_fast)
info = model.load_state_dict(state_dict, strict=True, assign=True)
logger.info(f"Loaded FP8 optimized weights: {info}")
if args.blocks_to_swap == 0:
model.to(device) # make sure all parameters are on the right device (e.g. RoPE etc.)
else:
# simple cast to dit_dtype
target_dtype = None # load as-is (dit_weight_dtype == dtype of the weights in state_dict)
target_device = None
if args.fp8:
target_dtype = torch.float8e4m3fn
if args.blocks_to_swap == 0:
logger.info(f"Move model to device: {device}")
target_device = device
if target_device is not None and target_dtype is not None:
model.to(target_device, target_dtype) # move and cast at the same time. this reduces redundant copy operations
# if args.compile:
# compile_backend, compile_mode, compile_dynamic, compile_fullgraph = args.compile_args
# logger.info(
# f"Torch Compiling[Backend: {compile_backend}; Mode: {compile_mode}; Dynamic: {compile_dynamic}; Fullgraph: {compile_fullgraph}]"
# )
# torch._dynamo.config.cache_size_limit = 32
# for i in range(len(model.blocks)):
# model.blocks[i] = torch.compile(
# model.blocks[i],
# backend=compile_backend,
# mode=compile_mode,
# dynamic=compile_dynamic.lower() in "true",
# fullgraph=compile_fullgraph.lower() in "true",
# )
if args.blocks_to_swap > 0:
logger.info(f"Enable swap {args.blocks_to_swap} blocks to CPU from device: {device}")
model.enable_block_swap(args.blocks_to_swap, device, supports_backward=False)
model.move_to_device_except_swap_blocks(device)
model.prepare_block_swap_before_forward()
else:
# make sure the model is on the right device
model.to(device)
model.eval().requires_grad_(False)
clean_memory_on_device(device)
# endregion
def decode_latent(
latent_window_size: int,
total_latent_sections: int,
bulk_decode: bool,
vae: AutoencoderKLCausal3D,
latent: torch.Tensor,
device: torch.device,
) -> torch.Tensor:
logger.info(f"Decoding video...")
if latent.ndim == 4:
latent = latent.unsqueeze(0) # add batch dimension
vae.to(device)
if not bulk_decode:
latent_window_size = latent_window_size # default is 9
# total_latent_sections = (args.video_seconds * 30) / (latent_window_size * 4)
# total_latent_sections = int(max(round(total_latent_sections), 1))
num_frames = latent_window_size * 4 - 3
latents_to_decode = []
latent_frame_index = 0
for i in range(total_latent_sections - 1, -1, -1):
is_last_section = i == total_latent_sections - 1
generated_latent_frames = (num_frames + 3) // 4 + (1 if is_last_section else 0)
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
section_latent = latent[:, :, latent_frame_index : latent_frame_index + section_latent_frames, :, :]
latents_to_decode.append(section_latent)
latent_frame_index += generated_latent_frames
latents_to_decode = latents_to_decode[::-1] # reverse the order of latents to decode
history_pixels = None
for latent in tqdm(latents_to_decode):
if history_pixels is None:
history_pixels = hunyuan.vae_decode(latent, vae).cpu()
else:
overlapped_frames = latent_window_size * 4 - 3
current_pixels = hunyuan.vae_decode(latent, vae).cpu()
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
clean_memory_on_device(device)
else:
# bulk decode
logger.info(f"Bulk decoding")
history_pixels = hunyuan.vae_decode(latent, vae).cpu()
vae.to("cpu")
print(f"Decoded. Pixel shape {history_pixels.shape}")
return history_pixels[0] # remove batch dimension
def prepare_i2v_inputs(
args: argparse.Namespace,
device: torch.device,
vae: AutoencoderKLCausal3D,
encoded_context: Optional[Dict] = None,
encoded_context_n: Optional[Dict] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
"""Prepare inputs for I2V
Args:
args: command line arguments
config: model configuration
device: device to use
vae: VAE model, used for image encoding
encoded_context: Pre-encoded text context
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
(noise, context, context_null, y, (arg_c, arg_null))
"""
height, width, video_seconds = check_inputs(args)
# prepare image
def preprocess_image(image_path: str):
image = Image.open(image_path).convert("RGB")
image_np = np.array(image) # PIL to numpy, HWC
image_np = image_video_dataset.resize_image_to_bucket(image_np, (width, height))
image_tensor = torch.from_numpy(image_np).float() / 127.5 - 1.0 # -1 to 1.0, HWC
image_tensor = image_tensor.permute(2, 0, 1)[None, :, None] # HWC -> CHW -> NCFHW, N=1, C=3, F=1
return image_tensor, image_np
img_tensor, img_np = preprocess_image(args.image_path)
if args.end_image_path is not None:
end_img_tensor, end_img_np = preprocess_image(args.end_image_path)
else:
end_img_tensor, end_img_np = None, None
# configure negative prompt
n_prompt = args.negative_prompt if args.negative_prompt else ""
if encoded_context is None:
# load text encoder
tokenizer1, text_encoder1 = load_text_encoder1(args, args.fp8_llm, device)
tokenizer2, text_encoder2 = load_text_encoder2(args)
text_encoder2.to(device)
# parse section prompts
section_prompts = {}
if ";;;" in args.prompt:
section_prompt_strs = args.prompt.split(";;;")
for section_prompt_str in section_prompt_strs:
if ":" not in section_prompt_str:
start = end = 0
prompt_str = section_prompt_str.strip()
else:
index_str, prompt_str = section_prompt_str.split(":", 1)
index_str = index_str.strip()
prompt_str = prompt_str.strip()
m = re.match(r"^(-?\d+)(-\d+)?$", index_str)
if m:
start = int(m.group(1))
end = int(m.group(2)[1:]) if m.group(2) is not None else start
else:
start = end = 0
prompt_str = section_prompt_str.strip()
for i in range(start, end + 1):
section_prompts[i] = prompt_str
else:
section_prompts[0] = args.prompt
# assert 0 in section_prompts, "Section prompts must contain section 0"
if 0 not in section_prompts:
# use smallest section index. prefer positive index over negative index
# if all section indices are negative, use the smallest negative index
indices = list(section_prompts.keys())
if all(i < 0 for i in indices):
section_index = min(indices)
else:
section_index = min(i for i in indices if i >= 0)
section_prompts[0] = section_prompts[section_index]
print(section_prompts)
logger.info(f"Encoding prompt")
llama_vecs = {}
llama_attention_masks = {}
clip_l_poolers = {}
with torch.autocast(device_type=device.type, dtype=text_encoder1.dtype), torch.no_grad():
for index, prompt in section_prompts.items():
llama_vec, clip_l_pooler = hunyuan.encode_prompt_conds(prompt, text_encoder1, text_encoder2, tokenizer1, tokenizer2)
llama_vec = llama_vec.cpu()
clip_l_pooler = clip_l_pooler.cpu()
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vecs[index] = llama_vec
llama_attention_masks[index] = llama_attention_mask
clip_l_poolers[index] = clip_l_pooler
if args.guidance_scale == 1.0:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vecs[0]), torch.zeros_like(clip_l_poolers[0])
else:
with torch.autocast(device_type=device.type, dtype=text_encoder1.dtype), torch.no_grad():
llama_vec_n, clip_l_pooler_n = hunyuan.encode_prompt_conds(
n_prompt, text_encoder1, text_encoder2, tokenizer1, tokenizer2
)
llama_vec_n = llama_vec_n.cpu()
clip_l_pooler_n = clip_l_pooler_n.cpu()
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# free text encoder and clean memory
del text_encoder1, text_encoder2, tokenizer1, tokenizer2
clean_memory_on_device(device)
# load image encoder
feature_extractor, image_encoder = load_image_encoders(args)
image_encoder.to(device)
# encode image with image encoder
with torch.no_grad():
image_encoder_output = hf_clip_vision_encode(img_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state.cpu()
if end_img_np is not None:
with torch.no_grad():
end_image_encoder_output = hf_clip_vision_encode(end_img_np, feature_extractor, image_encoder)
end_image_encoder_last_hidden_state = end_image_encoder_output.last_hidden_state.cpu()
else:
end_image_encoder_last_hidden_state = None
# free image encoder and clean memory
del image_encoder, feature_extractor
clean_memory_on_device(device)
else:
# Use pre-encoded context
llama_vecs = encoded_context["llama_vecs"]
llama_attention_masks = encoded_context["llama_attention_masks"]
clip_l_poolers = encoded_context["clip_l_poolers"]
llama_vec_n = encoded_context_n["llama_vec"]
llama_attention_mask_n = encoded_context_n["llama_attention_mask"]
clip_l_pooler_n = encoded_context_n["clip_l_pooler"]
image_encoder_last_hidden_state = encoded_context["image_encoder_last_hidden_state"]
# # end frame image
# if args.end_image_path is not None:
# end_img = Image.open(args.end_image_path).convert("RGB")
# end_img_cv2 = np.array(end_img) # PIL to numpy
# else:
# end_img = None
# end_img_cv2 = None
# has_end_image = end_img is not None
# VAE encoding
logger.info(f"Encoding image to latent space")
vae.to(device)
start_latent = hunyuan.vae_encode(img_tensor, vae).cpu()
if end_img_tensor is not None:
end_latent = hunyuan.vae_encode(end_img_tensor, vae).cpu()
else:
end_latent = None
vae.to("cpu") # move VAE to CPU to save memory
clean_memory_on_device(device)
# prepare model input arguments
arg_c = {}
for index in llama_vecs.keys():
llama_vec = llama_vecs[index]
llama_attention_mask = llama_attention_masks[index]
clip_l_pooler = clip_l_poolers[index]
arg_c_i = {
"llama_vec": llama_vec,
"llama_attention_mask": llama_attention_mask,
"clip_l_pooler": clip_l_pooler,
"image_encoder_last_hidden_state": image_encoder_last_hidden_state,
"end_image_encoder_last_hidden_state": end_image_encoder_last_hidden_state,
"prompt": section_prompts[index], # for debugging
}
arg_c[index] = arg_c_i
arg_null = {
"llama_vec": llama_vec_n,
"llama_attention_mask": llama_attention_mask_n,
"clip_l_pooler": clip_l_pooler_n,
"image_encoder_last_hidden_state": image_encoder_last_hidden_state,
"end_image_encoder_last_hidden_state": end_image_encoder_last_hidden_state,
}
return height, width, video_seconds, start_latent, end_latent, arg_c, arg_null
# def setup_scheduler(args: argparse.Namespace, config, device: torch.device) -> Tuple[Any, torch.Tensor]:
# """setup scheduler for sampling
# Args:
# args: command line arguments
# config: model configuration
# device: device to use
# Returns:
# Tuple[Any, torch.Tensor]: (scheduler, timesteps)
# """
# if args.sample_solver == "unipc":
# scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False)
# scheduler.set_timesteps(args.infer_steps, device=device, shift=args.flow_shift)
# timesteps = scheduler.timesteps
# elif args.sample_solver == "dpm++":
# scheduler = FlowDPMSolverMultistepScheduler(
# num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False
# )
# sampling_sigmas = get_sampling_sigmas(args.infer_steps, args.flow_shift)
# timesteps, _ = retrieve_timesteps(scheduler, device=device, sigmas=sampling_sigmas)
# elif args.sample_solver == "vanilla":
# scheduler = FlowMatchDiscreteScheduler(num_train_timesteps=config.num_train_timesteps, shift=args.flow_shift)
# scheduler.set_timesteps(args.infer_steps, device=device)
# timesteps = scheduler.timesteps
# # FlowMatchDiscreteScheduler does not support generator argument in step method
# org_step = scheduler.step
# def step_wrapper(
# model_output: torch.Tensor,
# timestep: Union[int, torch.Tensor],
# sample: torch.Tensor,
# return_dict: bool = True,
# generator=None,
# ):
# return org_step(model_output, timestep, sample, return_dict=return_dict)
# scheduler.step = step_wrapper
# else:
# raise NotImplementedError("Unsupported solver.")
# return scheduler, timesteps
def generate(args: argparse.Namespace, gen_settings: GenerationSettings, shared_models: Optional[Dict] = None) -> torch.Tensor:
"""main function for generation
Args:
args: command line arguments
shared_models: dictionary containing pre-loaded models and encoded data
Returns:
torch.Tensor: generated latent
"""
device, dit_weight_dtype = (gen_settings.device, gen_settings.dit_weight_dtype)
# prepare seed
seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
args.seed = seed # set seed to args for saving
# Check if we have shared models
if shared_models is not None:
# Use shared models and encoded data
vae = shared_models.get("vae")
model = shared_models.get("model")
encoded_context = shared_models.get("encoded_contexts", {}).get(args.prompt)
n_prompt = args.negative_prompt if args.negative_prompt else ""
encoded_context_n = shared_models.get("encoded_contexts", {}).get(n_prompt)
height, width, video_seconds, start_latent, end_latent, context, context_null = prepare_i2v_inputs(
args, device, vae, encoded_context, encoded_context_n
)
else:
# prepare inputs without shared models
vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device)
height, width, video_seconds, start_latent, end_latent, context, context_null = prepare_i2v_inputs(args, device, vae)
# load DiT model
model = load_dit_model(args, device)
# merge LoRA weights
if args.lora_weight is not None and len(args.lora_weight) > 0:
merge_lora_weights(lora_framepack, model, args, device) # ugly hack to common merge_lora_weights function
# if we only want to save the model, we can skip the rest
if args.save_merged_model:
return None
# optimize model: fp8 conversion, block swap etc.
optimize_model(model, args, device)
# sampling
latent_window_size = args.latent_window_size # default is 9
# ex: (5s * 30fps) / (9 * 4) = 4.16 -> 4 sections, 60s -> 1800 / 36 = 50 sections
total_latent_sections = (video_seconds * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
# set random generator
seed_g = torch.Generator(device="cpu")
seed_g.manual_seed(seed)
num_frames = latent_window_size * 4 - 3
logger.info(
f"Video size: {height}x{width}@{video_seconds} (HxW@seconds), fps: {args.fps}, "
f"infer_steps: {args.infer_steps}, frames per generation: {num_frames}"
)
history_latents = torch.zeros((1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32)
# history_pixels = None
total_generated_latent_frames = 0
latent_paddings = reversed(range(total_latent_sections))
if total_latent_sections > 4:
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
# items looks better than expanding it when total_latent_sections > 4
# One can try to remove below trick and just
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
# 4 sections: 3, 2, 1, 0. 50 sections: 3, 2, 2, ... 2, 1, 0
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
for section_index_reverse, latent_padding in enumerate(latent_paddings):
section_index = total_latent_sections - 1 - section_index_reverse
is_last_section = latent_padding == 0
is_first_section = section_index_reverse == 0
latent_padding_size = latent_padding * latent_window_size
logger.info(f"latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}")
reference_start_latent = start_latent
apply_end_image = args.end_image_path is not None and is_first_section
if apply_end_image:
latent_padding_size = 0
reference_start_latent = end_latent
logger.info(f"Apply experimental end image, latent_padding_size = {latent_padding_size}")
# sum([1, 3, 9, 1, 2, 16]) = 32
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
(
clean_latent_indices_pre,
blank_indices,
latent_indices,
clean_latent_indices_post,
clean_latent_2x_indices,
clean_latent_4x_indices,
) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
clean_latents_pre = reference_start_latent.to(history_latents)
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, : 1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
# if use_teacache:
# transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
# else:
# transformer.initialize_teacache(enable_teacache=False)
section_index_from_last = -(section_index_reverse + 1) # -1, -2 ...
if section_index_from_last in context:
prompt_index = section_index_from_last
elif section_index in context:
prompt_index = section_index
else:
prompt_index = 0
context_for_index = context[prompt_index]
# if args.section_prompts is not None:
logger.info(f"Section {section_index}: {context_for_index['prompt']}")
llama_vec = context_for_index["llama_vec"].to(device, dtype=torch.bfloat16)
llama_attention_mask = context_for_index["llama_attention_mask"].to(device)
clip_l_pooler = context_for_index["clip_l_pooler"].to(device, dtype=torch.bfloat16)
if not apply_end_image:
image_encoder_last_hidden_state = context_for_index["image_encoder_last_hidden_state"].to(device, dtype=torch.bfloat16)
else:
image_encoder_last_hidden_state = context_for_index["end_image_encoder_last_hidden_state"].to(
device, dtype=torch.bfloat16
)
llama_vec_n = context_null["llama_vec"].to(device, dtype=torch.bfloat16)
llama_attention_mask_n = context_null["llama_attention_mask"].to(device)
clip_l_pooler_n = context_null["clip_l_pooler"].to(device, dtype=torch.bfloat16)
generated_latents = sample_hunyuan(
transformer=model,
sampler=args.sample_solver,
width=width,
height=height,
frames=num_frames,
real_guidance_scale=args.guidance_scale,
distilled_guidance_scale=args.embedded_cfg_scale,
guidance_rescale=args.guidance_rescale,
# shift=3.0,
num_inference_steps=args.infer_steps,
generator=seed_g,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=device,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
)
if is_last_section:
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
logger.info(f"Generated. Latent shape {real_history_latents.shape}")
# # TODO support saving intermediate video
# clean_memory_on_device(device)
# vae.to(device)
# if history_pixels is None:
# history_pixels = hunyuan.vae_decode(real_history_latents, vae).cpu()
# else:
# section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
# overlapped_frames = latent_window_size * 4 - 3
# current_pixels = hunyuan.vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
# history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
# vae.to("cpu")
# # if not is_last_section:
# # # save intermediate video
# # save_video(history_pixels[0], args, total_generated_latent_frames)
# print(f"Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}")
# Only clean up shared models if they were created within this function
if shared_models is None:
# free memory
del model
# del scheduler
synchronize_device(device)
# wait for 5 seconds until block swap is done
logger.info("Waiting for 5 seconds to finish block swap")
time.sleep(5)
gc.collect()
clean_memory_on_device(device)
return vae, real_history_latents
def save_latent(latent: torch.Tensor, args: argparse.Namespace, height: int, width: int) -> str:
"""Save latent to file
Args:
latent: Latent tensor
args: command line arguments
height: height of frame
width: width of frame
Returns:
str: Path to saved latent file
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
video_seconds = args.video_seconds
latent_path = f"{save_path}/{time_flag}_{seed}_latent.safetensors"
if args.no_metadata:
metadata = None
else:
metadata = {
"seeds": f"{seed}",
"prompt": f"{args.prompt}",
"height": f"{height}",
"width": f"{width}",
"video_seconds": f"{video_seconds}",
"infer_steps": f"{args.infer_steps}",
"guidance_scale": f"{args.guidance_scale}",
"latent_window_size": f"{args.latent_window_size}",
"embedded_cfg_scale": f"{args.embedded_cfg_scale}",
"guidance_rescale": f"{args.guidance_rescale}",
"sample_solver": f"{args.sample_solver}",
"latent_window_size": f"{args.latent_window_size}",
"fps": f"{args.fps}",
}
if args.negative_prompt is not None:
metadata["negative_prompt"] = f"{args.negative_prompt}"
sd = {"latent": latent.contiguous()}
save_file(sd, latent_path, metadata=metadata)
logger.info(f"Latent saved to: {latent_path}")
return latent_path
def save_video(
video: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None, latent_frames: Optional[int] = None
) -> str:
"""Save video to file
Args:
video: Video tensor
args: command line arguments
original_base_name: Original base name (if latents are loaded from files)
Returns:
str: Path to saved video file
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
original_name = "" if original_base_name is None else f"_{original_base_name}"
latent_frames = "" if latent_frames is None else f"_{latent_frames}"
video_path = f"{save_path}/{time_flag}_{seed}{original_name}{latent_frames}.mp4"
video = video.unsqueeze(0)
save_videos_grid(video, video_path, fps=args.fps, rescale=True)
logger.info(f"Video saved to: {video_path}")
return video_path
def save_images(sample: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None) -> str:
"""Save images to directory
Args:
sample: Video tensor
args: command line arguments
original_base_name: Original base name (if latents are loaded from files)
Returns:
str: Path to saved images directory
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
original_name = "" if original_base_name is None else f"_{original_base_name}"
image_name = f"{time_flag}_{seed}{original_name}"
sample = sample.unsqueeze(0)
save_images_grid(sample, save_path, image_name, rescale=True)
logger.info(f"Sample images saved to: {save_path}/{image_name}")
return f"{save_path}/{image_name}"
def save_output(
args: argparse.Namespace,
vae: AutoencoderKLCausal3D,
latent: torch.Tensor,
device: torch.device,
original_base_names: Optional[List[str]] = None,
) -> None:
"""save output
Args:
args: command line arguments
vae: VAE model
latent: latent tensor
device: device to use
original_base_names: original base names (if latents are loaded from files)
"""
height, width = latent.shape[-2], latent.shape[-1] # BCTHW
height *= 8
width *= 8
# print(f"Saving output. Latent shape {latent.shape}; pixel shape {height}x{width}")
if args.output_type == "latent" or args.output_type == "both":
# save latent
save_latent(latent, args, height, width)
if args.output_type == "latent":
return
total_latent_sections = (args.video_seconds * 30) / (args.latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
video = decode_latent(args.latent_window_size, total_latent_sections, args.bulk_decode, vae, latent, device)
if args.output_type == "video" or args.output_type == "both":
# save video
original_name = "" if original_base_names is None else f"_{original_base_names[0]}"
save_video(video, args, original_name)
elif args.output_type == "images":
# save images
original_name = "" if original_base_names is None else f"_{original_base_names[0]}"
save_images(video, args, original_name)
def preprocess_prompts_for_batch(prompt_lines: List[str], base_args: argparse.Namespace) -> List[Dict]:
"""Process multiple prompts for batch mode
Args:
prompt_lines: List of prompt lines
base_args: Base command line arguments
Returns:
List[Dict]: List of prompt data dictionaries
"""
prompts_data = []
for line in prompt_lines:
line = line.strip()
if not line or line.startswith("#"): # Skip empty lines and comments
continue
# Parse prompt line and create override dictionary
prompt_data = parse_prompt_line(line)
logger.info(f"Parsed prompt data: {prompt_data}")
prompts_data.append(prompt_data)
return prompts_data
def get_generation_settings(args: argparse.Namespace) -> GenerationSettings:
device = torch.device(args.device)
dit_weight_dtype = None # default
if args.fp8_scaled:
dit_weight_dtype = None # various precision weights, so don't cast to specific dtype
elif args.fp8:
dit_weight_dtype = torch.float8_e4m3fn
logger.info(f"Using device: {device}, DiT weight weight precision: {dit_weight_dtype}")
gen_settings = GenerationSettings(device=device, dit_weight_dtype=dit_weight_dtype)
return gen_settings
def main():
# Parse arguments
args = parse_args()
# Check if latents are provided
latents_mode = args.latent_path is not None and len(args.latent_path) > 0
# Set device
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
logger.info(f"Using device: {device}")
args.device = device
if latents_mode:
# Original latent decode mode
original_base_names = []
latents_list = []
seeds = []
assert len(args.latent_path) == 1, "Only one latent path is supported for now"
for latent_path in args.latent_path:
original_base_names.append(os.path.splitext(os.path.basename(latent_path))[0])
seed = 0
if os.path.splitext(latent_path)[1] != ".safetensors":
latents = torch.load(latent_path, map_location="cpu")
else:
latents = load_file(latent_path)["latent"]
with safe_open(latent_path, framework="pt") as f:
metadata = f.metadata()
if metadata is None:
metadata = {}
logger.info(f"Loaded metadata: {metadata}")
if "seeds" in metadata:
seed = int(metadata["seeds"])
if "height" in metadata and "width" in metadata:
height = int(metadata["height"])
width = int(metadata["width"])
args.video_size = [height, width]
if "video_seconds" in metadata:
args.video_seconds = float(metadata["video_seconds"])
seeds.append(seed)
logger.info(f"Loaded latent from {latent_path}. Shape: {latents.shape}")
if latents.ndim == 5: # [BCTHW]
latents = latents.squeeze(0) # [CTHW]
latents_list.append(latents)
latent = torch.stack(latents_list, dim=0) # [N, ...], must be same shape
args.seed = seeds[0]
vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device)
save_output(args, vae, latent, device, original_base_names)
elif args.from_file:
# Batch mode from file
# Read prompts from file
with open(args.from_file, "r", encoding="utf-8") as f:
prompt_lines = f.readlines()
# Process prompts
prompts_data = preprocess_prompts_for_batch(prompt_lines, args)
# process_batch_prompts(prompts_data, args)
raise NotImplementedError("Batch mode is not implemented yet.")
elif args.interactive:
# Interactive mode
# process_interactive(args)
raise NotImplementedError("Interactive mode is not implemented yet.")
else:
# Single prompt mode (original behavior)
# Generate latent
gen_settings = get_generation_settings(args)
vae, latent = generate(args, gen_settings)
# print(f"Generated latent shape: {latent.shape}")
# # Save latent and video
# if args.save_merged_model:
# return
save_output(args, vae, latent[0], device)
logger.info("Done!")
if __name__ == "__main__":
main()
|