File size: 9,766 Bytes
ef46f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
import logging
from types import SimpleNamespace
from typing import Optional, Union

import accelerate
from accelerate import Accelerator, init_empty_weights
import torch
from safetensors.torch import load_file
from transformers import (
    LlamaTokenizerFast,
    LlamaConfig,
    LlamaModel,
    CLIPTokenizer,
    CLIPTextModel,
    CLIPConfig,
    SiglipImageProcessor,
    SiglipVisionModel,
    SiglipVisionConfig,
)

from utils.safetensors_utils import load_split_weights
from hunyuan_model.vae import load_vae as hunyuan_load_vae

import logging

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)


def load_vae(
    vae_path: str, vae_chunk_size: Optional[int], vae_spatial_tile_sample_min_size: Optional[int], device: Union[str, torch.device]
):
    # single file and directory (contains 'vae') support
    if os.path.isdir(vae_path):
        vae_path = os.path.join(vae_path, "vae", "diffusion_pytorch_model.safetensors")
    else:
        vae_path = vae_path

    vae_dtype = torch.float16  # if vae_dtype is None else str_to_dtype(vae_dtype)
    vae, _, s_ratio, t_ratio = hunyuan_load_vae(vae_dtype=vae_dtype, device=device, vae_path=vae_path)
    vae.eval()
    # vae_kwargs = {"s_ratio": s_ratio, "t_ratio": t_ratio}

    # set chunk_size to CausalConv3d recursively
    chunk_size = vae_chunk_size
    if chunk_size is not None:
        vae.set_chunk_size_for_causal_conv_3d(chunk_size)
        logger.info(f"Set chunk_size to {chunk_size} for CausalConv3d")

    if vae_spatial_tile_sample_min_size is not None:
        vae.enable_spatial_tiling(True)
        vae.tile_sample_min_size = vae_spatial_tile_sample_min_size
        vae.tile_latent_min_size = vae_spatial_tile_sample_min_size // 8
        logger.info(f"Enabled spatial tiling with min size {vae_spatial_tile_sample_min_size}")
    # elif vae_tiling:
    else:
        vae.enable_spatial_tiling(True)

    return vae


# region Text Encoders

# Text Encoder configs are copied from HunyuanVideo repo

LLAMA_CONFIG = {
    "architectures": ["LlamaModel"],
    "attention_bias": False,
    "attention_dropout": 0.0,
    "bos_token_id": 128000,
    "eos_token_id": 128001,
    "head_dim": 128,
    "hidden_act": "silu",
    "hidden_size": 4096,
    "initializer_range": 0.02,
    "intermediate_size": 14336,
    "max_position_embeddings": 8192,
    "mlp_bias": False,
    "model_type": "llama",
    "num_attention_heads": 32,
    "num_hidden_layers": 32,
    "num_key_value_heads": 8,
    "pretraining_tp": 1,
    "rms_norm_eps": 1e-05,
    "rope_scaling": None,
    "rope_theta": 500000.0,
    "tie_word_embeddings": False,
    "torch_dtype": "float16",
    "transformers_version": "4.46.3",
    "use_cache": True,
    "vocab_size": 128320,
}

CLIP_CONFIG = {
    #   "_name_or_path": "/raid/aryan/llava-llama-3-8b-v1_1-extracted/text_encoder_2",
    "architectures": ["CLIPTextModel"],
    "attention_dropout": 0.0,
    "bos_token_id": 0,
    "dropout": 0.0,
    "eos_token_id": 2,
    "hidden_act": "quick_gelu",
    "hidden_size": 768,
    "initializer_factor": 1.0,
    "initializer_range": 0.02,
    "intermediate_size": 3072,
    "layer_norm_eps": 1e-05,
    "max_position_embeddings": 77,
    "model_type": "clip_text_model",
    "num_attention_heads": 12,
    "num_hidden_layers": 12,
    "pad_token_id": 1,
    "projection_dim": 768,
    "torch_dtype": "float16",
    "transformers_version": "4.48.0.dev0",
    "vocab_size": 49408,
}


def load_text_encoder1(
    args, fp8_llm: Optional[bool] = False, device: Optional[Union[str, torch.device]] = None
) -> tuple[LlamaTokenizerFast, LlamaModel]:
    # single file, split file and directory (contains 'text_encoder') support
    logger.info(f"Loading text encoder 1 tokenizer")
    tokenizer1 = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer")

    logger.info(f"Loading text encoder 1 from {args.text_encoder1}")
    if os.path.isdir(args.text_encoder1):
        # load from directory, configs are in the directory
        text_encoder1 = LlamaModel.from_pretrained(args.text_encoder1, subfolder="text_encoder", torch_dtype=torch.float16)
    else:
        # load from file, we create the model with the appropriate config
        config = LlamaConfig(**LLAMA_CONFIG)
        with init_empty_weights():
            text_encoder1 = LlamaModel._from_config(config, torch_dtype=torch.float16)

        state_dict = load_split_weights(args.text_encoder1)

        # support weights from ComfyUI
        if "model.embed_tokens.weight" in state_dict:
            for key in list(state_dict.keys()):
                if key.startswith("model."):
                    new_key = key.replace("model.", "")
                    state_dict[new_key] = state_dict[key]
                    del state_dict[key]
        if "tokenizer" in state_dict:
            state_dict.pop("tokenizer")
        if "lm_head.weight" in state_dict:
            state_dict.pop("lm_head.weight")

        # # support weights from ComfyUI
        # if "tokenizer" in state_dict:
        #     state_dict.pop("tokenizer")

        text_encoder1.load_state_dict(state_dict, strict=True, assign=True)

    if fp8_llm:
        org_dtype = text_encoder1.dtype
        logger.info(f"Moving and casting text encoder to {device} and torch.float8_e4m3fn")
        text_encoder1.to(device=device, dtype=torch.float8_e4m3fn)

        # prepare LLM for fp8
        def prepare_fp8(llama_model: LlamaModel, target_dtype):
            def forward_hook(module):
                def forward(hidden_states):
                    input_dtype = hidden_states.dtype
                    hidden_states = hidden_states.to(torch.float32)
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
                    hidden_states = hidden_states * torch.rsqrt(variance + module.variance_epsilon)
                    return module.weight.to(input_dtype) * hidden_states.to(input_dtype)

                return forward

            for module in llama_model.modules():
                if module.__class__.__name__ in ["Embedding"]:
                    # print("set", module.__class__.__name__, "to", target_dtype)
                    module.to(target_dtype)
                if module.__class__.__name__ in ["LlamaRMSNorm"]:
                    # print("set", module.__class__.__name__, "hooks")
                    module.forward = forward_hook(module)

        prepare_fp8(text_encoder1, org_dtype)
    else:
        text_encoder1.to(device)

    text_encoder1.eval()
    return tokenizer1, text_encoder1


def load_text_encoder2(args) -> tuple[CLIPTokenizer, CLIPTextModel]:
    # single file and directory (contains 'text_encoder_2') support
    logger.info(f"Loading text encoder 2 tokenizer")
    tokenizer2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer_2")

    logger.info(f"Loading text encoder 2 from {args.text_encoder2}")
    if os.path.isdir(args.text_encoder2):
        # load from directory, configs are in the directory
        text_encoder2 = CLIPTextModel.from_pretrained(args.text_encoder2, subfolder="text_encoder_2", torch_dtype=torch.float16)
    else:
        # we only have one file, so we can load it directly
        config = CLIPConfig(**CLIP_CONFIG)
        with init_empty_weights():
            text_encoder2 = CLIPTextModel._from_config(config, torch_dtype=torch.float16)

        state_dict = load_file(args.text_encoder2)

        text_encoder2.load_state_dict(state_dict, strict=True, assign=True)

    text_encoder2.eval()
    return tokenizer2, text_encoder2


# endregion

# region image encoder

# Siglip configs are copied from FramePack repo
FEATURE_EXTRACTOR_CONFIG = {
    "do_convert_rgb": None,
    "do_normalize": True,
    "do_rescale": True,
    "do_resize": True,
    "image_mean": [0.5, 0.5, 0.5],
    "image_processor_type": "SiglipImageProcessor",
    "image_std": [0.5, 0.5, 0.5],
    "processor_class": "SiglipProcessor",
    "resample": 3,
    "rescale_factor": 0.00392156862745098,
    "size": {"height": 384, "width": 384},
}
IMAGE_ENCODER_CONFIG = {
    "_name_or_path": "/home/lvmin/.cache/huggingface/hub/models--black-forest-labs--FLUX.1-Redux-dev/snapshots/1282f955f706b5240161278f2ef261d2a29ad649/image_encoder",
    "architectures": ["SiglipVisionModel"],
    "attention_dropout": 0.0,
    "hidden_act": "gelu_pytorch_tanh",
    "hidden_size": 1152,
    "image_size": 384,
    "intermediate_size": 4304,
    "layer_norm_eps": 1e-06,
    "model_type": "siglip_vision_model",
    "num_attention_heads": 16,
    "num_channels": 3,
    "num_hidden_layers": 27,
    "patch_size": 14,
    "torch_dtype": "bfloat16",
    "transformers_version": "4.46.2",
}


def load_image_encoders(args):
    logger.info(f"Loading image encoder feature extractor")
    feature_extractor = SiglipImageProcessor(**FEATURE_EXTRACTOR_CONFIG)

    # single file, split file and directory (contains 'image_encoder') support
    logger.info(f"Loading image encoder from {args.image_encoder}")
    if os.path.isdir(args.image_encoder):
        # load from directory, configs are in the directory
        image_encoder = SiglipVisionModel.from_pretrained(args.image_encoder, subfolder="image_encoder", torch_dtype=torch.float16)
    else:
        # load from file, we create the model with the appropriate config
        config = SiglipVisionConfig(**IMAGE_ENCODER_CONFIG)
        with init_empty_weights():
            image_encoder = SiglipVisionModel._from_config(config, torch_dtype=torch.float16)

        state_dict = load_file(args.image_encoder)

        image_encoder.load_state_dict(state_dict, strict=True, assign=True)

    image_encoder.eval()
    return feature_extractor, image_encoder


# endregion