File size: 9,766 Bytes
ef46f0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import os
import logging
from types import SimpleNamespace
from typing import Optional, Union
import accelerate
from accelerate import Accelerator, init_empty_weights
import torch
from safetensors.torch import load_file
from transformers import (
LlamaTokenizerFast,
LlamaConfig,
LlamaModel,
CLIPTokenizer,
CLIPTextModel,
CLIPConfig,
SiglipImageProcessor,
SiglipVisionModel,
SiglipVisionConfig,
)
from utils.safetensors_utils import load_split_weights
from hunyuan_model.vae import load_vae as hunyuan_load_vae
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def load_vae(
vae_path: str, vae_chunk_size: Optional[int], vae_spatial_tile_sample_min_size: Optional[int], device: Union[str, torch.device]
):
# single file and directory (contains 'vae') support
if os.path.isdir(vae_path):
vae_path = os.path.join(vae_path, "vae", "diffusion_pytorch_model.safetensors")
else:
vae_path = vae_path
vae_dtype = torch.float16 # if vae_dtype is None else str_to_dtype(vae_dtype)
vae, _, s_ratio, t_ratio = hunyuan_load_vae(vae_dtype=vae_dtype, device=device, vae_path=vae_path)
vae.eval()
# vae_kwargs = {"s_ratio": s_ratio, "t_ratio": t_ratio}
# set chunk_size to CausalConv3d recursively
chunk_size = vae_chunk_size
if chunk_size is not None:
vae.set_chunk_size_for_causal_conv_3d(chunk_size)
logger.info(f"Set chunk_size to {chunk_size} for CausalConv3d")
if vae_spatial_tile_sample_min_size is not None:
vae.enable_spatial_tiling(True)
vae.tile_sample_min_size = vae_spatial_tile_sample_min_size
vae.tile_latent_min_size = vae_spatial_tile_sample_min_size // 8
logger.info(f"Enabled spatial tiling with min size {vae_spatial_tile_sample_min_size}")
# elif vae_tiling:
else:
vae.enable_spatial_tiling(True)
return vae
# region Text Encoders
# Text Encoder configs are copied from HunyuanVideo repo
LLAMA_CONFIG = {
"architectures": ["LlamaModel"],
"attention_bias": False,
"attention_dropout": 0.0,
"bos_token_id": 128000,
"eos_token_id": 128001,
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 14336,
"max_position_embeddings": 8192,
"mlp_bias": False,
"model_type": "llama",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"num_key_value_heads": 8,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": None,
"rope_theta": 500000.0,
"tie_word_embeddings": False,
"torch_dtype": "float16",
"transformers_version": "4.46.3",
"use_cache": True,
"vocab_size": 128320,
}
CLIP_CONFIG = {
# "_name_or_path": "/raid/aryan/llava-llama-3-8b-v1_1-extracted/text_encoder_2",
"architectures": ["CLIPTextModel"],
"attention_dropout": 0.0,
"bos_token_id": 0,
"dropout": 0.0,
"eos_token_id": 2,
"hidden_act": "quick_gelu",
"hidden_size": 768,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 77,
"model_type": "clip_text_model",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 1,
"projection_dim": 768,
"torch_dtype": "float16",
"transformers_version": "4.48.0.dev0",
"vocab_size": 49408,
}
def load_text_encoder1(
args, fp8_llm: Optional[bool] = False, device: Optional[Union[str, torch.device]] = None
) -> tuple[LlamaTokenizerFast, LlamaModel]:
# single file, split file and directory (contains 'text_encoder') support
logger.info(f"Loading text encoder 1 tokenizer")
tokenizer1 = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer")
logger.info(f"Loading text encoder 1 from {args.text_encoder1}")
if os.path.isdir(args.text_encoder1):
# load from directory, configs are in the directory
text_encoder1 = LlamaModel.from_pretrained(args.text_encoder1, subfolder="text_encoder", torch_dtype=torch.float16)
else:
# load from file, we create the model with the appropriate config
config = LlamaConfig(**LLAMA_CONFIG)
with init_empty_weights():
text_encoder1 = LlamaModel._from_config(config, torch_dtype=torch.float16)
state_dict = load_split_weights(args.text_encoder1)
# support weights from ComfyUI
if "model.embed_tokens.weight" in state_dict:
for key in list(state_dict.keys()):
if key.startswith("model."):
new_key = key.replace("model.", "")
state_dict[new_key] = state_dict[key]
del state_dict[key]
if "tokenizer" in state_dict:
state_dict.pop("tokenizer")
if "lm_head.weight" in state_dict:
state_dict.pop("lm_head.weight")
# # support weights from ComfyUI
# if "tokenizer" in state_dict:
# state_dict.pop("tokenizer")
text_encoder1.load_state_dict(state_dict, strict=True, assign=True)
if fp8_llm:
org_dtype = text_encoder1.dtype
logger.info(f"Moving and casting text encoder to {device} and torch.float8_e4m3fn")
text_encoder1.to(device=device, dtype=torch.float8_e4m3fn)
# prepare LLM for fp8
def prepare_fp8(llama_model: LlamaModel, target_dtype):
def forward_hook(module):
def forward(hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + module.variance_epsilon)
return module.weight.to(input_dtype) * hidden_states.to(input_dtype)
return forward
for module in llama_model.modules():
if module.__class__.__name__ in ["Embedding"]:
# print("set", module.__class__.__name__, "to", target_dtype)
module.to(target_dtype)
if module.__class__.__name__ in ["LlamaRMSNorm"]:
# print("set", module.__class__.__name__, "hooks")
module.forward = forward_hook(module)
prepare_fp8(text_encoder1, org_dtype)
else:
text_encoder1.to(device)
text_encoder1.eval()
return tokenizer1, text_encoder1
def load_text_encoder2(args) -> tuple[CLIPTokenizer, CLIPTextModel]:
# single file and directory (contains 'text_encoder_2') support
logger.info(f"Loading text encoder 2 tokenizer")
tokenizer2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer_2")
logger.info(f"Loading text encoder 2 from {args.text_encoder2}")
if os.path.isdir(args.text_encoder2):
# load from directory, configs are in the directory
text_encoder2 = CLIPTextModel.from_pretrained(args.text_encoder2, subfolder="text_encoder_2", torch_dtype=torch.float16)
else:
# we only have one file, so we can load it directly
config = CLIPConfig(**CLIP_CONFIG)
with init_empty_weights():
text_encoder2 = CLIPTextModel._from_config(config, torch_dtype=torch.float16)
state_dict = load_file(args.text_encoder2)
text_encoder2.load_state_dict(state_dict, strict=True, assign=True)
text_encoder2.eval()
return tokenizer2, text_encoder2
# endregion
# region image encoder
# Siglip configs are copied from FramePack repo
FEATURE_EXTRACTOR_CONFIG = {
"do_convert_rgb": None,
"do_normalize": True,
"do_rescale": True,
"do_resize": True,
"image_mean": [0.5, 0.5, 0.5],
"image_processor_type": "SiglipImageProcessor",
"image_std": [0.5, 0.5, 0.5],
"processor_class": "SiglipProcessor",
"resample": 3,
"rescale_factor": 0.00392156862745098,
"size": {"height": 384, "width": 384},
}
IMAGE_ENCODER_CONFIG = {
"_name_or_path": "/home/lvmin/.cache/huggingface/hub/models--black-forest-labs--FLUX.1-Redux-dev/snapshots/1282f955f706b5240161278f2ef261d2a29ad649/image_encoder",
"architectures": ["SiglipVisionModel"],
"attention_dropout": 0.0,
"hidden_act": "gelu_pytorch_tanh",
"hidden_size": 1152,
"image_size": 384,
"intermediate_size": 4304,
"layer_norm_eps": 1e-06,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_channels": 3,
"num_hidden_layers": 27,
"patch_size": 14,
"torch_dtype": "bfloat16",
"transformers_version": "4.46.2",
}
def load_image_encoders(args):
logger.info(f"Loading image encoder feature extractor")
feature_extractor = SiglipImageProcessor(**FEATURE_EXTRACTOR_CONFIG)
# single file, split file and directory (contains 'image_encoder') support
logger.info(f"Loading image encoder from {args.image_encoder}")
if os.path.isdir(args.image_encoder):
# load from directory, configs are in the directory
image_encoder = SiglipVisionModel.from_pretrained(args.image_encoder, subfolder="image_encoder", torch_dtype=torch.float16)
else:
# load from file, we create the model with the appropriate config
config = SiglipVisionConfig(**IMAGE_ENCODER_CONFIG)
with init_empty_weights():
image_encoder = SiglipVisionModel._from_config(config, torch_dtype=torch.float16)
state_dict = load_file(args.image_encoder)
image_encoder.load_state_dict(state_dict, strict=True, assign=True)
image_encoder.eval()
return feature_extractor, image_encoder
# endregion
|