File size: 10,413 Bytes
ef46f0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import importlib.metadata
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
try:
import flash_attn
from flash_attn.flash_attn_interface import _flash_attn_forward
from flash_attn.flash_attn_interface import flash_attn_varlen_func
from flash_attn.flash_attn_interface import flash_attn_func
except ImportError:
flash_attn = None
flash_attn_varlen_func = None
_flash_attn_forward = None
flash_attn_func = None
try:
print(f"Trying to import sageattention")
from sageattention import sageattn_varlen, sageattn
print("Successfully imported sageattention")
except ImportError:
print(f"Failed to import sageattention")
sageattn_varlen = None
sageattn = None
try:
import xformers.ops as xops
except ImportError:
xops = None
MEMORY_LAYOUT = {
"flash": (
lambda x: x.view(x.shape[0] * x.shape[1], *x.shape[2:]),
lambda x: x,
),
"flash_fixlen": (
lambda x: x,
lambda x: x,
),
"sageattn": (
lambda x: x.view(x.shape[0] * x.shape[1], *x.shape[2:]),
lambda x: x,
),
"sageattn_fixlen": (
lambda x: x.transpose(1, 2),
lambda x: x.transpose(1, 2),
),
"torch": (
lambda x: x.transpose(1, 2),
lambda x: x.transpose(1, 2),
),
"xformers": (
lambda x: x,
lambda x: x,
),
"vanilla": (
lambda x: x.transpose(1, 2),
lambda x: x.transpose(1, 2),
),
}
def get_cu_seqlens(text_mask, img_len):
"""Calculate cu_seqlens_q, cu_seqlens_kv using text_mask and img_len
Args:
text_mask (torch.Tensor): the mask of text
img_len (int): the length of image
Returns:
torch.Tensor: the calculated cu_seqlens for flash attention
"""
batch_size = text_mask.shape[0]
text_len = text_mask.sum(dim=1)
max_len = text_mask.shape[1] + img_len
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
for i in range(batch_size):
s = text_len[i] + img_len
s1 = i * max_len + s
s2 = (i + 1) * max_len
cu_seqlens[2 * i + 1] = s1
cu_seqlens[2 * i + 2] = s2
return cu_seqlens
def attention(
q_or_qkv_list,
k=None,
v=None,
mode="flash",
drop_rate=0,
attn_mask=None,
total_len=None,
causal=False,
cu_seqlens_q=None,
cu_seqlens_kv=None,
max_seqlen_q=None,
max_seqlen_kv=None,
batch_size=1,
):
"""
Perform QKV self attention.
Args:
q (torch.Tensor): Query tensor with shape [b, s, a, d], where a is the number of heads.
k (torch.Tensor): Key tensor with shape [b, s1, a, d]
v (torch.Tensor): Value tensor with shape [b, s1, a, d]
mode (str): Attention mode. Choose from 'self_flash', 'cross_flash', 'torch', and 'vanilla'.
drop_rate (float): Dropout rate in attention map. (default: 0)
attn_mask (torch.Tensor): Attention mask with shape [b, s1] (cross_attn), or [b, a, s, s1] (torch or vanilla).
(default: None)
causal (bool): Whether to use causal attention. (default: False)
cu_seqlens_q (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
used to index into q.
cu_seqlens_kv (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
used to index into kv.
max_seqlen_q (int): The maximum sequence length in the batch of q.
max_seqlen_kv (int): The maximum sequence length in the batch of k and v.
Returns:
torch.Tensor: Output tensor after self attention with shape [b, s, ad]
"""
q, k, v = q_or_qkv_list if type(q_or_qkv_list) == list else (q_or_qkv_list, k, v)
if type(q_or_qkv_list) == list:
q_or_qkv_list.clear()
split_attn = total_len is not None
if split_attn and mode == "sageattn":
mode = "sageattn_fixlen"
elif split_attn and mode == "flash":
mode = "flash_fixlen"
# print(f"Attention mode: {mode}, split_attn: {split_attn}")
pre_attn_layout, post_attn_layout = MEMORY_LAYOUT[mode]
# trim the sequence length to the actual length instead of attn_mask
if split_attn:
trimmed_len = q.shape[1] - total_len
q = [q[i : i + 1, : total_len[i]] for i in range(len(q))]
k = [k[i : i + 1, : total_len[i]] for i in range(len(k))]
v = [v[i : i + 1, : total_len[i]] for i in range(len(v))]
q = [pre_attn_layout(q_i) for q_i in q]
k = [pre_attn_layout(k_i) for k_i in k]
v = [pre_attn_layout(v_i) for v_i in v]
# print(
# f"Trimming the sequence length to {total_len},trimmed_len: {trimmed_len}, q.shape: {[q_i.shape for q_i in q]}, mode: {mode}"
# )
else:
q = pre_attn_layout(q)
k = pre_attn_layout(k)
v = pre_attn_layout(v)
if mode == "torch":
if split_attn:
x = []
for i in range(len(q)):
x_i = F.scaled_dot_product_attention(q[i], k[i], v[i], dropout_p=drop_rate, is_causal=causal)
q[i], k[i], v[i] = None, None, None
x.append(x_i)
del q, k, v
else:
if attn_mask is not None and attn_mask.dtype != torch.bool:
attn_mask = attn_mask.to(q.dtype)
x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal)
del q, k, v
del attn_mask
elif mode == "xformers":
# B, M, H, K: M is the sequence length, H is the number of heads, K is the dimension of the heads -> it is same as input dimension
# currently only support batch_size = 1
assert split_attn, "Xformers only supports splitting"
x = []
for i in range(len(q)):
x_i = xops.memory_efficient_attention(q[i], k[i], v[i], p=drop_rate) # , causal=causal)
q[i], k[i], v[i] = None, None, None
x.append(x_i)
del q, k, v
elif mode == "flash":
x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
del q, k, v
# x with shape [(bxs), a, d]
x = x.view(batch_size, max_seqlen_q, x.shape[-2], x.shape[-1]) # reshape x to [b, s, a, d]
elif mode == "flash_fixlen":
x = []
for i in range(len(q)):
# q: (batch_size, seqlen, nheads, headdim), k: (batch_size, seqlen, nheads_k, headdim), v: (batch_size, seqlen, nheads_k, headdim)
x_i = flash_attn_func(q[i], k[i], v[i], dropout_p=drop_rate, causal=causal)
q[i], k[i], v[i] = None, None, None
x.append(x_i)
del q, k, v
elif mode == "sageattn":
x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
del q, k, v
# x with shape [(bxs), a, d]
x = x.view(batch_size, max_seqlen_q, x.shape[-2], x.shape[-1]) # reshape x to [b, s, a, d]
elif mode == "sageattn_fixlen":
x = []
for i in range(len(q)):
# HND seems to cause an error
x_i = sageattn(q[i], k[i], v[i]) # (batch_size, seq_len, head_num, head_dim)
q[i], k[i], v[i] = None, None, None
x.append(x_i)
del q, k, v
elif mode == "vanilla":
assert not split_attn, "Vanilla attention does not support trimming"
scale_factor = 1 / math.sqrt(q.size(-1))
b, a, s, _ = q.shape
s1 = k.size(2)
attn_bias = torch.zeros(b, a, s, s1, dtype=q.dtype, device=q.device)
if causal:
# Only applied to self attention
assert attn_mask is None, "Causal mask and attn_mask cannot be used together"
temp_mask = torch.ones(b, a, s, s, dtype=torch.bool, device=q.device).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(q.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
# TODO: Maybe force q and k to be float32 to avoid numerical overflow
attn = (q @ k.transpose(-2, -1)) * scale_factor
attn += attn_bias
attn = attn.softmax(dim=-1)
attn = torch.dropout(attn, p=drop_rate, train=True)
x = attn @ v
else:
raise NotImplementedError(f"Unsupported attention mode: {mode}")
if split_attn:
x = [post_attn_layout(x_i) for x_i in x]
for i in range(len(x)):
x[i] = F.pad(x[i], (0, 0, 0, 0, 0, trimmed_len[i]))
x = torch.cat(x, dim=0)
else:
x = post_attn_layout(x)
b, s, a, d = x.shape
out = x.reshape(b, s, -1)
return out
def parallel_attention(hybrid_seq_parallel_attn, q, k, v, img_q_len, img_kv_len, cu_seqlens_q, cu_seqlens_kv):
attn1 = hybrid_seq_parallel_attn(
None,
q[:, :img_q_len, :, :],
k[:, :img_kv_len, :, :],
v[:, :img_kv_len, :, :],
dropout_p=0.0,
causal=False,
joint_tensor_query=q[:, img_q_len : cu_seqlens_q[1]],
joint_tensor_key=k[:, img_kv_len : cu_seqlens_kv[1]],
joint_tensor_value=v[:, img_kv_len : cu_seqlens_kv[1]],
joint_strategy="rear",
)
if flash_attn.__version__ >= "2.7.0":
attn2, *_ = _flash_attn_forward(
q[:, cu_seqlens_q[1] :],
k[:, cu_seqlens_kv[1] :],
v[:, cu_seqlens_kv[1] :],
dropout_p=0.0,
softmax_scale=q.shape[-1] ** (-0.5),
causal=False,
window_size_left=-1,
window_size_right=-1,
softcap=0.0,
alibi_slopes=None,
return_softmax=False,
)
else:
attn2, *_ = _flash_attn_forward(
q[:, cu_seqlens_q[1] :],
k[:, cu_seqlens_kv[1] :],
v[:, cu_seqlens_kv[1] :],
dropout_p=0.0,
softmax_scale=q.shape[-1] ** (-0.5),
causal=False,
window_size=(-1, -1),
softcap=0.0,
alibi_slopes=None,
return_softmax=False,
)
attn = torch.cat([attn1, attn2], dim=1)
b, s, a, d = attn.shape
attn = attn.reshape(b, s, -1)
return attn
|