File size: 118,757 Bytes
ef46f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
import ast
import asyncio
from datetime import timedelta
import gc
import importlib
import argparse
import math
import os
import pathlib
import re
import sys
import random
import time
import json
from multiprocessing import Value
from typing import Any, Dict, List, Optional
import accelerate
import numpy as np
from packaging.version import Version
from PIL import Image

import huggingface_hub
import toml

import torch
from tqdm import tqdm
from accelerate.utils import TorchDynamoPlugin, set_seed, DynamoBackend
from accelerate import Accelerator, InitProcessGroupKwargs, DistributedDataParallelKwargs, PartialState
from safetensors.torch import load_file
import transformers
from diffusers.optimization import (
    SchedulerType as DiffusersSchedulerType,
    TYPE_TO_SCHEDULER_FUNCTION as DIFFUSERS_TYPE_TO_SCHEDULER_FUNCTION,
)
from transformers.optimization import SchedulerType, TYPE_TO_SCHEDULER_FUNCTION

from dataset import config_utils
from hunyuan_model.models import load_transformer, get_rotary_pos_embed_by_shape, HYVideoDiffusionTransformer
import hunyuan_model.text_encoder as text_encoder_module
from hunyuan_model.vae import load_vae, VAE_VER
import hunyuan_model.vae as vae_module
from modules.scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
import networks.lora as lora_module
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
from dataset.image_video_dataset import ARCHITECTURE_HUNYUAN_VIDEO, ARCHITECTURE_HUNYUAN_VIDEO_FULL
from hv_generate_video import save_images_grid, save_videos_grid, resize_image_to_bucket, encode_to_latents

import logging

from utils import huggingface_utils, model_utils, train_utils, sai_model_spec

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)


SS_METADATA_KEY_BASE_MODEL_VERSION = "ss_base_model_version"
SS_METADATA_KEY_NETWORK_MODULE = "ss_network_module"
SS_METADATA_KEY_NETWORK_DIM = "ss_network_dim"
SS_METADATA_KEY_NETWORK_ALPHA = "ss_network_alpha"
SS_METADATA_KEY_NETWORK_ARGS = "ss_network_args"

SS_METADATA_MINIMUM_KEYS = [
    SS_METADATA_KEY_BASE_MODEL_VERSION,
    SS_METADATA_KEY_NETWORK_MODULE,
    SS_METADATA_KEY_NETWORK_DIM,
    SS_METADATA_KEY_NETWORK_ALPHA,
    SS_METADATA_KEY_NETWORK_ARGS,
]


def clean_memory_on_device(device: torch.device):
    r"""
    Clean memory on the specified device, will be called from training scripts.
    """
    gc.collect()

    # device may "cuda" or "cuda:0", so we need to check the type of device
    if device.type == "cuda":
        torch.cuda.empty_cache()
    if device.type == "xpu":
        torch.xpu.empty_cache()
    if device.type == "mps":
        torch.mps.empty_cache()


# for collate_fn: epoch and step is multiprocessing.Value
class collator_class:
    def __init__(self, epoch, step, dataset):
        self.current_epoch = epoch
        self.current_step = step
        self.dataset = dataset  # not used if worker_info is not None, in case of multiprocessing

    def __call__(self, examples):
        worker_info = torch.utils.data.get_worker_info()
        # worker_info is None in the main process
        if worker_info is not None:
            dataset = worker_info.dataset
        else:
            dataset = self.dataset

        # set epoch and step
        dataset.set_current_epoch(self.current_epoch.value)
        dataset.set_current_step(self.current_step.value)
        return examples[0]


def prepare_accelerator(args: argparse.Namespace) -> Accelerator:
    """
    DeepSpeed is not supported in this script currently.
    """
    if args.logging_dir is None:
        logging_dir = None
    else:
        log_prefix = "" if args.log_prefix is None else args.log_prefix
        logging_dir = args.logging_dir + "/" + log_prefix + time.strftime("%Y%m%d%H%M%S", time.localtime())

    if args.log_with is None:
        if logging_dir is not None:
            log_with = "tensorboard"
        else:
            log_with = None
    else:
        log_with = args.log_with
        if log_with in ["tensorboard", "all"]:
            if logging_dir is None:
                raise ValueError(
                    "logging_dir is required when log_with is tensorboard / Tensorboardを使う場合、logging_dirを指定してください"
                )
        if log_with in ["wandb", "all"]:
            try:
                import wandb
            except ImportError:
                raise ImportError("No wandb / wandb がインストールされていないようです")
            if logging_dir is not None:
                os.makedirs(logging_dir, exist_ok=True)
                os.environ["WANDB_DIR"] = logging_dir
            if args.wandb_api_key is not None:
                wandb.login(key=args.wandb_api_key)

    kwargs_handlers = [
        (
            InitProcessGroupKwargs(
                backend="gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
                init_method=(
                    "env://?use_libuv=False" if os.name == "nt" and Version(torch.__version__) >= Version("2.4.0") else None
                ),
                timeout=timedelta(minutes=args.ddp_timeout) if args.ddp_timeout else None,
            )
            if torch.cuda.device_count() > 1
            else None
        ),
        (
            DistributedDataParallelKwargs(
                gradient_as_bucket_view=args.ddp_gradient_as_bucket_view, static_graph=args.ddp_static_graph
            )
            if args.ddp_gradient_as_bucket_view or args.ddp_static_graph
            else None
        ),
    ]
    kwargs_handlers = [i for i in kwargs_handlers if i is not None]

    dynamo_plugin = None
    if args.dynamo_backend.upper() != "NO":
        dynamo_plugin = TorchDynamoPlugin(
            backend=DynamoBackend(args.dynamo_backend.upper()),
            mode=args.dynamo_mode,
            fullgraph=args.dynamo_fullgraph,
            dynamic=args.dynamo_dynamic,
        )

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=log_with,
        project_dir=logging_dir,
        dynamo_plugin=dynamo_plugin,
        kwargs_handlers=kwargs_handlers,
    )
    print("accelerator device:", accelerator.device)
    return accelerator


def line_to_prompt_dict(line: str) -> dict:
    # subset of gen_img_diffusers
    prompt_args = line.split(" --")
    prompt_dict = {}
    prompt_dict["prompt"] = prompt_args[0]

    for parg in prompt_args:
        try:
            m = re.match(r"w (\d+)", parg, re.IGNORECASE)
            if m:
                prompt_dict["width"] = int(m.group(1))
                continue

            m = re.match(r"h (\d+)", parg, re.IGNORECASE)
            if m:
                prompt_dict["height"] = int(m.group(1))
                continue

            m = re.match(r"f (\d+)", parg, re.IGNORECASE)
            if m:
                prompt_dict["frame_count"] = int(m.group(1))
                continue

            m = re.match(r"d (\d+)", parg, re.IGNORECASE)
            if m:
                prompt_dict["seed"] = int(m.group(1))
                continue

            m = re.match(r"s (\d+)", parg, re.IGNORECASE)
            if m:  # steps
                prompt_dict["sample_steps"] = max(1, min(1000, int(m.group(1))))
                continue

            m = re.match(r"g ([\d\.]+)", parg, re.IGNORECASE)
            if m:  # scale
                prompt_dict["guidance_scale"] = float(m.group(1))
                continue

            m = re.match(r"fs ([\d\.]+)", parg, re.IGNORECASE)
            if m:  # scale
                prompt_dict["discrete_flow_shift"] = float(m.group(1))
                continue

            m = re.match(r"l ([\d\.]+)", parg, re.IGNORECASE)
            if m:  # scale
                prompt_dict["cfg_scale"] = float(m.group(1))
                continue

            m = re.match(r"n (.+)", parg, re.IGNORECASE)
            if m:  # negative prompt
                prompt_dict["negative_prompt"] = m.group(1)
                continue

            m = re.match(r"i (.+)", parg, re.IGNORECASE)
            if m:  # negative prompt
                prompt_dict["image_path"] = m.group(1)
                continue

            m = re.match(r"cn (.+)", parg, re.IGNORECASE)
            if m:
                prompt_dict["control_video_path"] = m.group(1)
                continue

        except ValueError as ex:
            logger.error(f"Exception in parsing / 解析エラー: {parg}")
            logger.error(ex)

    return prompt_dict


def load_prompts(prompt_file: str) -> list[Dict]:
    # read prompts
    if prompt_file.endswith(".txt"):
        with open(prompt_file, "r", encoding="utf-8") as f:
            lines = f.readlines()
        prompts = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"]
    elif prompt_file.endswith(".toml"):
        with open(prompt_file, "r", encoding="utf-8") as f:
            data = toml.load(f)
        prompts = [dict(**data["prompt"], **subset) for subset in data["prompt"]["subset"]]
    elif prompt_file.endswith(".json"):
        with open(prompt_file, "r", encoding="utf-8") as f:
            prompts = json.load(f)

    # preprocess prompts
    for i in range(len(prompts)):
        prompt_dict = prompts[i]
        if isinstance(prompt_dict, str):
            prompt_dict = line_to_prompt_dict(prompt_dict)
            prompts[i] = prompt_dict
        assert isinstance(prompt_dict, dict)

        # Adds an enumerator to the dict based on prompt position. Used later to name image files. Also cleanup of extra data in original prompt dict.
        prompt_dict["enum"] = i
        prompt_dict.pop("subset", None)

    return prompts


def compute_density_for_timestep_sampling(
    weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
    """Compute the density for sampling the timesteps when doing SD3 training.

    Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.

    SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
    """
    if weighting_scheme == "logit_normal":
        # See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
        u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
        u = torch.nn.functional.sigmoid(u)
    elif weighting_scheme == "mode":
        u = torch.rand(size=(batch_size,), device="cpu")
        u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
    else:
        u = torch.rand(size=(batch_size,), device="cpu")
    return u


def get_sigmas(noise_scheduler, timesteps, device, n_dim=4, dtype=torch.float32):
    sigmas = noise_scheduler.sigmas.to(device=device, dtype=dtype)
    schedule_timesteps = noise_scheduler.timesteps.to(device)
    timesteps = timesteps.to(device)

    # if sum([(schedule_timesteps == t) for t in timesteps]) < len(timesteps):
    if any([(schedule_timesteps == t).sum() == 0 for t in timesteps]):
        # raise ValueError("Some timesteps are not in the schedule / 一部のtimestepsがスケジュールに含まれていません")
        # round to nearest timestep
        logger.warning("Some timesteps are not in the schedule / 一部のtimestepsがスケジュールに含まれていません")
        step_indices = [torch.argmin(torch.abs(schedule_timesteps - t)).item() for t in timesteps]
    else:
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]

    sigma = sigmas[step_indices].flatten()
    while len(sigma.shape) < n_dim:
        sigma = sigma.unsqueeze(-1)
    return sigma


def compute_loss_weighting_for_sd3(weighting_scheme: str, noise_scheduler, timesteps, device, dtype):
    """Computes loss weighting scheme for SD3 training.

    Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.

    SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
    """
    if weighting_scheme == "sigma_sqrt" or weighting_scheme == "cosmap":
        sigmas = get_sigmas(noise_scheduler, timesteps, device, n_dim=5, dtype=dtype)
        if weighting_scheme == "sigma_sqrt":
            weighting = (sigmas**-2.0).float()
        else:
            bot = 1 - 2 * sigmas + 2 * sigmas**2
            weighting = 2 / (math.pi * bot)
    else:
        weighting = None  # torch.ones_like(sigmas)
    return weighting


def should_sample_images(args, steps, epoch=None):
    if steps == 0:
        if not args.sample_at_first:
            return False
    else:
        should_sample_by_steps = args.sample_every_n_steps is not None and steps % args.sample_every_n_steps == 0
        should_sample_by_epochs = (
            args.sample_every_n_epochs is not None and epoch is not None and epoch % args.sample_every_n_epochs == 0
        )
        if not should_sample_by_steps and not should_sample_by_epochs:
            return False
    return True


class NetworkTrainer:
    def __init__(self):
        self.blocks_to_swap = None

    # TODO 他のスクリプトと共通化する
    def generate_step_logs(
        self,
        args: argparse.Namespace,
        current_loss,
        avr_loss,
        lr_scheduler,
        lr_descriptions,
        optimizer=None,
        keys_scaled=None,
        mean_norm=None,
        maximum_norm=None,
    ):
        network_train_unet_only = True
        logs = {"loss/current": current_loss, "loss/average": avr_loss}

        if keys_scaled is not None:
            logs["max_norm/keys_scaled"] = keys_scaled
            logs["max_norm/average_key_norm"] = mean_norm
            logs["max_norm/max_key_norm"] = maximum_norm

        lrs = lr_scheduler.get_last_lr()
        for i, lr in enumerate(lrs):
            if lr_descriptions is not None:
                lr_desc = lr_descriptions[i]
            else:
                idx = i - (0 if network_train_unet_only else -1)
                if idx == -1:
                    lr_desc = "textencoder"
                else:
                    if len(lrs) > 2:
                        lr_desc = f"group{idx}"
                    else:
                        lr_desc = "unet"

            logs[f"lr/{lr_desc}"] = lr

            if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower():
                # tracking d*lr value
                logs[f"lr/d*lr/{lr_desc}"] = (
                    lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"]
                )
            if (
                args.optimizer_type.lower().endswith("ProdigyPlusScheduleFree".lower()) and optimizer is not None
            ):  # tracking d*lr value of unet.
                logs["lr/d*lr"] = optimizer.param_groups[0]["d"] * optimizer.param_groups[0]["lr"]
        else:
            idx = 0
            if not network_train_unet_only:
                logs["lr/textencoder"] = float(lrs[0])
                idx = 1

            for i in range(idx, len(lrs)):
                logs[f"lr/group{i}"] = float(lrs[i])
                if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower():
                    logs[f"lr/d*lr/group{i}"] = (
                        lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"]
                    )
                if args.optimizer_type.lower().endswith("ProdigyPlusScheduleFree".lower()) and optimizer is not None:
                    logs[f"lr/d*lr/group{i}"] = optimizer.param_groups[i]["d"] * optimizer.param_groups[i]["lr"]

        return logs

    def get_optimizer(self, args, trainable_params: list[torch.nn.Parameter]) -> tuple[str, str, torch.optim.Optimizer]:
        # adamw, adamw8bit, adafactor

        optimizer_type = args.optimizer_type.lower()

        # split optimizer_type and optimizer_args
        optimizer_kwargs = {}
        if args.optimizer_args is not None and len(args.optimizer_args) > 0:
            for arg in args.optimizer_args:
                key, value = arg.split("=")
                value = ast.literal_eval(value)
                optimizer_kwargs[key] = value

        lr = args.learning_rate
        optimizer = None
        optimizer_class = None

        if optimizer_type.endswith("8bit".lower()):
            try:
                import bitsandbytes as bnb
            except ImportError:
                raise ImportError("No bitsandbytes / bitsandbytesがインストールされていないようです")

            if optimizer_type == "AdamW8bit".lower():
                logger.info(f"use 8-bit AdamW optimizer | {optimizer_kwargs}")
                optimizer_class = bnb.optim.AdamW8bit
                optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

        elif optimizer_type == "Adafactor".lower():
            # Adafactor: check relative_step and warmup_init
            if "relative_step" not in optimizer_kwargs:
                optimizer_kwargs["relative_step"] = True  # default
            if not optimizer_kwargs["relative_step"] and optimizer_kwargs.get("warmup_init", False):
                logger.info(
                    f"set relative_step to True because warmup_init is True / warmup_initがTrueのためrelative_stepをTrueにします"
                )
                optimizer_kwargs["relative_step"] = True
            logger.info(f"use Adafactor optimizer | {optimizer_kwargs}")

            if optimizer_kwargs["relative_step"]:
                logger.info(f"relative_step is true / relative_stepがtrueです")
                if lr != 0.0:
                    logger.warning(f"learning rate is used as initial_lr / 指定したlearning rateはinitial_lrとして使用されます")
                args.learning_rate = None

                if args.lr_scheduler != "adafactor":
                    logger.info(f"use adafactor_scheduler / スケジューラにadafactor_schedulerを使用します")
                args.lr_scheduler = f"adafactor:{lr}"  # ちょっと微妙だけど

                lr = None
            else:
                if args.max_grad_norm != 0.0:
                    logger.warning(
                        f"because max_grad_norm is set, clip_grad_norm is enabled. consider set to 0 / max_grad_normが設定されているためclip_grad_normが有効になります。0に設定して無効にしたほうがいいかもしれません"
                    )
                if args.lr_scheduler != "constant_with_warmup":
                    logger.warning(f"constant_with_warmup will be good / スケジューラはconstant_with_warmupが良いかもしれません")
                if optimizer_kwargs.get("clip_threshold", 1.0) != 1.0:
                    logger.warning(f"clip_threshold=1.0 will be good / clip_thresholdは1.0が良いかもしれません")

            optimizer_class = transformers.optimization.Adafactor
            optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

        elif optimizer_type == "AdamW".lower():
            logger.info(f"use AdamW optimizer | {optimizer_kwargs}")
            optimizer_class = torch.optim.AdamW
            optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

        if optimizer is None:
            # 任意のoptimizerを使う
            case_sensitive_optimizer_type = args.optimizer_type  # not lower
            logger.info(f"use {case_sensitive_optimizer_type} | {optimizer_kwargs}")

            if "." not in case_sensitive_optimizer_type:  # from torch.optim
                optimizer_module = torch.optim
            else:  # from other library
                values = case_sensitive_optimizer_type.split(".")
                optimizer_module = importlib.import_module(".".join(values[:-1]))
                case_sensitive_optimizer_type = values[-1]

            optimizer_class = getattr(optimizer_module, case_sensitive_optimizer_type)
            optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

        # for logging
        optimizer_name = optimizer_class.__module__ + "." + optimizer_class.__name__
        optimizer_args = ",".join([f"{k}={v}" for k, v in optimizer_kwargs.items()])

        # get train and eval functions
        if hasattr(optimizer, "train") and callable(optimizer.train):
            train_fn = optimizer.train
            eval_fn = optimizer.eval
        else:
            train_fn = lambda: None
            eval_fn = lambda: None

        return optimizer_name, optimizer_args, optimizer, train_fn, eval_fn

    def is_schedulefree_optimizer(self, optimizer: torch.optim.Optimizer, args: argparse.Namespace) -> bool:
        return args.optimizer_type.lower().endswith("schedulefree".lower())  # or args.optimizer_schedulefree_wrapper

    def get_dummy_scheduler(optimizer: torch.optim.Optimizer) -> Any:
        # dummy scheduler for schedulefree optimizer. supports only empty step(), get_last_lr() and optimizers.
        # this scheduler is used for logging only.
        # this isn't be wrapped by accelerator because of this class is not a subclass of torch.optim.lr_scheduler._LRScheduler
        class DummyScheduler:
            def __init__(self, optimizer: torch.optim.Optimizer):
                self.optimizer = optimizer

            def step(self):
                pass

            def get_last_lr(self):
                return [group["lr"] for group in self.optimizer.param_groups]

        return DummyScheduler(optimizer)

    def get_lr_scheduler(self, args, optimizer: torch.optim.Optimizer, num_processes: int):
        """
        Unified API to get any scheduler from its name.
        """
        # if schedulefree optimizer, return dummy scheduler
        if self.is_schedulefree_optimizer(optimizer, args):
            return self.get_dummy_scheduler(optimizer)

        name = args.lr_scheduler
        num_training_steps = args.max_train_steps * num_processes  # * args.gradient_accumulation_steps
        num_warmup_steps: Optional[int] = (
            int(args.lr_warmup_steps * num_training_steps) if isinstance(args.lr_warmup_steps, float) else args.lr_warmup_steps
        )
        num_decay_steps: Optional[int] = (
            int(args.lr_decay_steps * num_training_steps) if isinstance(args.lr_decay_steps, float) else args.lr_decay_steps
        )
        num_stable_steps = num_training_steps - num_warmup_steps - num_decay_steps
        num_cycles = args.lr_scheduler_num_cycles
        power = args.lr_scheduler_power
        timescale = args.lr_scheduler_timescale
        min_lr_ratio = args.lr_scheduler_min_lr_ratio

        lr_scheduler_kwargs = {}  # get custom lr_scheduler kwargs
        if args.lr_scheduler_args is not None and len(args.lr_scheduler_args) > 0:
            for arg in args.lr_scheduler_args:
                key, value = arg.split("=")
                value = ast.literal_eval(value)
                lr_scheduler_kwargs[key] = value

        def wrap_check_needless_num_warmup_steps(return_vals):
            if num_warmup_steps is not None and num_warmup_steps != 0:
                raise ValueError(f"{name} does not require `num_warmup_steps`. Set None or 0.")
            return return_vals

        # using any lr_scheduler from other library
        if args.lr_scheduler_type:
            lr_scheduler_type = args.lr_scheduler_type
            logger.info(f"use {lr_scheduler_type} | {lr_scheduler_kwargs} as lr_scheduler")
            if "." not in lr_scheduler_type:  # default to use torch.optim
                lr_scheduler_module = torch.optim.lr_scheduler
            else:
                values = lr_scheduler_type.split(".")
                lr_scheduler_module = importlib.import_module(".".join(values[:-1]))
                lr_scheduler_type = values[-1]
            lr_scheduler_class = getattr(lr_scheduler_module, lr_scheduler_type)
            lr_scheduler = lr_scheduler_class(optimizer, **lr_scheduler_kwargs)
            return lr_scheduler

        if name.startswith("adafactor"):
            assert (
                type(optimizer) == transformers.optimization.Adafactor
            ), f"adafactor scheduler must be used with Adafactor optimizer / adafactor schedulerはAdafactorオプティマイザと同時に使ってください"
            initial_lr = float(name.split(":")[1])
            # logger.info(f"adafactor scheduler init lr {initial_lr}")
            return wrap_check_needless_num_warmup_steps(transformers.optimization.AdafactorSchedule(optimizer, initial_lr))

        if name == DiffusersSchedulerType.PIECEWISE_CONSTANT.value:
            name = DiffusersSchedulerType(name)
            schedule_func = DIFFUSERS_TYPE_TO_SCHEDULER_FUNCTION[name]
            return schedule_func(optimizer, **lr_scheduler_kwargs)  # step_rules and last_epoch are given as kwargs

        name = SchedulerType(name)
        schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]

        if name == SchedulerType.CONSTANT:
            return wrap_check_needless_num_warmup_steps(schedule_func(optimizer, **lr_scheduler_kwargs))

        # All other schedulers require `num_warmup_steps`
        if num_warmup_steps is None:
            raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")

        if name == SchedulerType.CONSTANT_WITH_WARMUP:
            return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, **lr_scheduler_kwargs)

        if name == SchedulerType.INVERSE_SQRT:
            return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, timescale=timescale, **lr_scheduler_kwargs)

        # All other schedulers require `num_training_steps`
        if num_training_steps is None:
            raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")

        if name == SchedulerType.COSINE_WITH_RESTARTS:
            return schedule_func(
                optimizer,
                num_warmup_steps=num_warmup_steps,
                num_training_steps=num_training_steps,
                num_cycles=num_cycles,
                **lr_scheduler_kwargs,
            )

        if name == SchedulerType.POLYNOMIAL:
            return schedule_func(
                optimizer,
                num_warmup_steps=num_warmup_steps,
                num_training_steps=num_training_steps,
                power=power,
                **lr_scheduler_kwargs,
            )

        if name == SchedulerType.COSINE_WITH_MIN_LR:
            return schedule_func(
                optimizer,
                num_warmup_steps=num_warmup_steps,
                num_training_steps=num_training_steps,
                num_cycles=num_cycles / 2,
                min_lr_rate=min_lr_ratio,
                **lr_scheduler_kwargs,
            )

        # these schedulers do not require `num_decay_steps`
        if name == SchedulerType.LINEAR or name == SchedulerType.COSINE:
            return schedule_func(
                optimizer,
                num_warmup_steps=num_warmup_steps,
                num_training_steps=num_training_steps,
                **lr_scheduler_kwargs,
            )

        # All other schedulers require `num_decay_steps`
        if num_decay_steps is None:
            raise ValueError(f"{name} requires `num_decay_steps`, please provide that argument.")
        if name == SchedulerType.WARMUP_STABLE_DECAY:
            return schedule_func(
                optimizer,
                num_warmup_steps=num_warmup_steps,
                num_stable_steps=num_stable_steps,
                num_decay_steps=num_decay_steps,
                num_cycles=num_cycles / 2,
                min_lr_ratio=min_lr_ratio if min_lr_ratio is not None else 0.0,
                **lr_scheduler_kwargs,
            )

        return schedule_func(
            optimizer,
            num_warmup_steps=num_warmup_steps,
            num_training_steps=num_training_steps,
            num_decay_steps=num_decay_steps,
            **lr_scheduler_kwargs,
        )

    def resume_from_local_or_hf_if_specified(self, accelerator: Accelerator, args: argparse.Namespace) -> bool:
        if not args.resume:
            return False

        if not args.resume_from_huggingface:
            logger.info(f"resume training from local state: {args.resume}")
            accelerator.load_state(args.resume)
            return True

        logger.info(f"resume training from huggingface state: {args.resume}")
        repo_id = args.resume.split("/")[0] + "/" + args.resume.split("/")[1]
        path_in_repo = "/".join(args.resume.split("/")[2:])
        revision = None
        repo_type = None
        if ":" in path_in_repo:
            divided = path_in_repo.split(":")
            if len(divided) == 2:
                path_in_repo, revision = divided
                repo_type = "model"
            else:
                path_in_repo, revision, repo_type = divided
        logger.info(f"Downloading state from huggingface: {repo_id}/{path_in_repo}@{revision}")

        list_files = huggingface_utils.list_dir(
            repo_id=repo_id,
            subfolder=path_in_repo,
            revision=revision,
            token=args.huggingface_token,
            repo_type=repo_type,
        )

        async def download(filename) -> str:
            def task():
                return huggingface_hub.hf_hub_download(
                    repo_id=repo_id,
                    filename=filename,
                    revision=revision,
                    repo_type=repo_type,
                    token=args.huggingface_token,
                )

            return await asyncio.get_event_loop().run_in_executor(None, task)

        loop = asyncio.get_event_loop()
        results = loop.run_until_complete(asyncio.gather(*[download(filename=filename.rfilename) for filename in list_files]))
        if len(results) == 0:
            raise ValueError(
                "No files found in the specified repo id/path/revision / 指定されたリポジトリID/パス/リビジョンにファイルが見つかりませんでした"
            )
        dirname = os.path.dirname(results[0])
        accelerator.load_state(dirname)

        return True

    def get_noisy_model_input_and_timesteps(
        self,
        args: argparse.Namespace,
        noise: torch.Tensor,
        latents: torch.Tensor,
        noise_scheduler: FlowMatchDiscreteScheduler,
        device: torch.device,
        dtype: torch.dtype,
    ):
        batch_size = noise.shape[0]

        if args.timestep_sampling == "uniform" or args.timestep_sampling == "sigmoid" or args.timestep_sampling == "shift":
            if args.timestep_sampling == "uniform" or args.timestep_sampling == "sigmoid":
                # Simple random t-based noise sampling
                if args.timestep_sampling == "sigmoid":
                    t = torch.sigmoid(args.sigmoid_scale * torch.randn((batch_size,), device=device))
                else:
                    t = torch.rand((batch_size,), device=device)

            elif args.timestep_sampling == "shift":
                shift = args.discrete_flow_shift
                logits_norm = torch.randn(batch_size, device=device)
                logits_norm = logits_norm * args.sigmoid_scale  # larger scale for more uniform sampling
                t = logits_norm.sigmoid()
                t = (t * shift) / (1 + (shift - 1) * t)

            t_min = args.min_timestep if args.min_timestep is not None else 0
            t_max = args.max_timestep if args.max_timestep is not None else 1000.0
            t_min /= 1000.0
            t_max /= 1000.0
            t = t * (t_max - t_min) + t_min  # scale to [t_min, t_max], default [0, 1]

            timesteps = t * 1000.0
            t = t.view(-1, 1, 1, 1, 1)
            noisy_model_input = (1 - t) * latents + t * noise

            timesteps += 1  # 1 to 1000
        else:
            # Sample a random timestep for each image
            # for weighting schemes where we sample timesteps non-uniformly
            u = compute_density_for_timestep_sampling(
                weighting_scheme=args.weighting_scheme,
                batch_size=batch_size,
                logit_mean=args.logit_mean,
                logit_std=args.logit_std,
                mode_scale=args.mode_scale,
            )
            # indices = (u * noise_scheduler.config.num_train_timesteps).long()
            t_min = args.min_timestep if args.min_timestep is not None else 0
            t_max = args.max_timestep if args.max_timestep is not None else 1000
            indices = (u * (t_max - t_min) + t_min).long()

            timesteps = noise_scheduler.timesteps[indices].to(device=device)  # 1 to 1000

            # Add noise according to flow matching.
            sigmas = get_sigmas(noise_scheduler, timesteps, device, n_dim=latents.ndim, dtype=dtype)
            noisy_model_input = sigmas * noise + (1.0 - sigmas) * latents

        return noisy_model_input, timesteps

    def show_timesteps(self, args: argparse.Namespace):
        N_TRY = 100000
        BATCH_SIZE = 1000
        CONSOLE_WIDTH = 64
        N_TIMESTEPS_PER_LINE = 25

        noise_scheduler = FlowMatchDiscreteScheduler(shift=args.discrete_flow_shift, reverse=True, solver="euler")
        # print(f"Noise scheduler timesteps: {noise_scheduler.timesteps}")

        latents = torch.zeros(BATCH_SIZE, 1, 1, 1, 1, dtype=torch.float16)
        noise = torch.ones_like(latents)

        # sample timesteps
        sampled_timesteps = [0] * noise_scheduler.config.num_train_timesteps
        for i in tqdm(range(N_TRY // BATCH_SIZE)):
            # we use noise=1, so retured noisy_model_input is same as timestep, because `noisy_model_input = (1 - t) * latents + t * noise`
            actual_timesteps, _ = self.get_noisy_model_input_and_timesteps(
                args, noise, latents, noise_scheduler, "cpu", torch.float16
            )
            actual_timesteps = actual_timesteps[:, 0, 0, 0, 0] * 1000
            for t in actual_timesteps:
                t = int(t.item())
                sampled_timesteps[t] += 1

        # sample weighting
        sampled_weighting = [0] * noise_scheduler.config.num_train_timesteps
        for i in tqdm(range(len(sampled_weighting))):
            timesteps = torch.tensor([i + 1], device="cpu")
            weighting = compute_loss_weighting_for_sd3(args.weighting_scheme, noise_scheduler, timesteps, "cpu", torch.float16)
            if weighting is None:
                weighting = torch.tensor(1.0, device="cpu")
            elif torch.isinf(weighting).any():
                weighting = torch.tensor(1.0, device="cpu")
            sampled_weighting[i] = weighting.item()

        # show results
        if args.show_timesteps == "image":
            # show timesteps with matplotlib
            import matplotlib.pyplot as plt

            plt.figure(figsize=(10, 5))
            plt.subplot(1, 2, 1)
            plt.bar(range(len(sampled_timesteps)), sampled_timesteps, width=1.0)
            plt.title("Sampled timesteps")
            plt.xlabel("Timestep")
            plt.ylabel("Count")

            plt.subplot(1, 2, 2)
            plt.bar(range(len(sampled_weighting)), sampled_weighting, width=1.0)
            plt.title("Sampled loss weighting")
            plt.xlabel("Timestep")
            plt.ylabel("Weighting")

            plt.tight_layout()
            plt.show()

        else:
            sampled_timesteps = np.array(sampled_timesteps)
            sampled_weighting = np.array(sampled_weighting)

            # average per line
            sampled_timesteps = sampled_timesteps.reshape(-1, N_TIMESTEPS_PER_LINE).mean(axis=1)
            sampled_weighting = sampled_weighting.reshape(-1, N_TIMESTEPS_PER_LINE).mean(axis=1)

            max_count = max(sampled_timesteps)
            print(f"Sampled timesteps: max count={max_count}")
            for i, t in enumerate(sampled_timesteps):
                line = f"{(i)*N_TIMESTEPS_PER_LINE:4d}-{(i+1)*N_TIMESTEPS_PER_LINE-1:4d}: "
                line += "#" * int(t / max_count * CONSOLE_WIDTH)
                print(line)

            max_weighting = max(sampled_weighting)
            print(f"Sampled loss weighting: max weighting={max_weighting}")
            for i, w in enumerate(sampled_weighting):
                line = f"{i*N_TIMESTEPS_PER_LINE:4d}-{(i+1)*N_TIMESTEPS_PER_LINE-1:4d}: {w:8.2f} "
                line += "#" * int(w / max_weighting * CONSOLE_WIDTH)
                print(line)

    def sample_images(self, accelerator, args, epoch, steps, vae, transformer, sample_parameters, dit_dtype):
        """architecture independent sample images"""
        if not should_sample_images(args, steps, epoch):
            return

        logger.info("")
        logger.info(f"generating sample images at step / サンプル画像生成 ステップ: {steps}")
        if sample_parameters is None:
            logger.error(f"No prompt file / プロンプトファイルがありません: {args.sample_prompts}")
            return

        distributed_state = PartialState()  # for multi gpu distributed inference. this is a singleton, so it's safe to use it here

        # Use the unwrapped model
        transformer = accelerator.unwrap_model(transformer)
        transformer.switch_block_swap_for_inference()

        # Create a directory to save the samples
        save_dir = args.output_dir + "/sample"
        os.makedirs(save_dir, exist_ok=True)

        # save random state to restore later
        rng_state = torch.get_rng_state()
        cuda_rng_state = None
        try:
            cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None
        except Exception:
            pass

        if distributed_state.num_processes <= 1:
            # If only one device is available, just use the original prompt list. We don't need to care about the distribution of prompts.
            with torch.no_grad(), accelerator.autocast():
                for sample_parameter in sample_parameters:
                    self.sample_image_inference(
                        accelerator, args, transformer, dit_dtype, vae, save_dir, sample_parameter, epoch, steps
                    )
                    clean_memory_on_device(accelerator.device)
        else:
            # Creating list with N elements, where each element is a list of prompt_dicts, and N is the number of processes available (number of devices available)
            # prompt_dicts are assigned to lists based on order of processes, to attempt to time the image creation time to match enum order. Probably only works when steps and sampler are identical.
            per_process_params = []  # list of lists
            for i in range(distributed_state.num_processes):
                per_process_params.append(sample_parameters[i :: distributed_state.num_processes])

            with torch.no_grad():
                with distributed_state.split_between_processes(per_process_params) as sample_parameter_lists:
                    for sample_parameter in sample_parameter_lists[0]:
                        self.sample_image_inference(
                            accelerator, args, transformer, dit_dtype, vae, save_dir, sample_parameter, epoch, steps
                        )
                        clean_memory_on_device(accelerator.device)

        torch.set_rng_state(rng_state)
        if cuda_rng_state is not None:
            torch.cuda.set_rng_state(cuda_rng_state)

        transformer.switch_block_swap_for_training()
        clean_memory_on_device(accelerator.device)

    def sample_image_inference(self, accelerator, args, transformer, dit_dtype, vae, save_dir, sample_parameter, epoch, steps):
        """architecture independent sample images"""
        sample_steps = sample_parameter.get("sample_steps", 20)
        width = sample_parameter.get("width", 256)  # make smaller for faster and memory saving inference
        height = sample_parameter.get("height", 256)
        frame_count = sample_parameter.get("frame_count", 1)
        guidance_scale = sample_parameter.get("guidance_scale", self.default_guidance_scale)
        discrete_flow_shift = sample_parameter.get("discrete_flow_shift", 14.5)
        seed = sample_parameter.get("seed")
        prompt: str = sample_parameter.get("prompt", "")
        cfg_scale = sample_parameter.get("cfg_scale", None)  # None for architecture default
        negative_prompt = sample_parameter.get("negative_prompt", None)

        frame_count = (frame_count - 1) // 4 * 4 + 1  # 1, 5, 9, 13, ... For HunyuanVideo and Wan2.1

        if self.i2v_training:
            image_path = sample_parameter.get("image_path", None)
            if image_path is None:
                logger.error("No image_path for i2v model / i2vモデルのサンプル画像生成にはimage_pathが必要です")
                return
        else:
            image_path = None

        if self.control_training:
            control_video_path = sample_parameter.get("control_video_path", None)
            if control_video_path is None:
                logger.error(
                    "No control_video_path for control model / controlモデルのサンプル画像生成にはcontrol_video_pathが必要です"
                )
                return
        else:
            control_video_path = None

        device = accelerator.device
        if seed is not None:
            torch.manual_seed(seed)
            torch.cuda.manual_seed(seed)
            generator = torch.Generator(device=device).manual_seed(seed)
        else:
            # True random sample image generation
            torch.seed()
            torch.cuda.seed()
            generator = torch.Generator(device=device).manual_seed(torch.initial_seed())

        logger.info(f"prompt: {prompt}")
        logger.info(f"height: {height}")
        logger.info(f"width: {width}")
        logger.info(f"frame count: {frame_count}")
        logger.info(f"sample steps: {sample_steps}")
        logger.info(f"guidance scale: {guidance_scale}")
        logger.info(f"discrete flow shift: {discrete_flow_shift}")
        if seed is not None:
            logger.info(f"seed: {seed}")

        do_classifier_free_guidance = False
        if negative_prompt is not None:
            do_classifier_free_guidance = True
            logger.info(f"negative prompt: {negative_prompt}")
            logger.info(f"cfg scale: {cfg_scale}")

        if self.i2v_training:
            logger.info(f"image path: {image_path}")
        if self.control_training:
            logger.info(f"control video path: {control_video_path}")

        # inference: architecture dependent
        video = self.do_inference(
            accelerator,
            args,
            sample_parameter,
            vae,
            dit_dtype,
            transformer,
            discrete_flow_shift,
            sample_steps,
            width,
            height,
            frame_count,
            generator,
            do_classifier_free_guidance,
            guidance_scale,
            cfg_scale,
            image_path=image_path,
            control_video_path=control_video_path,
        )

        # Save video
        if video is None:
            logger.error("No video generated / 生成された動画がありません")
            return
        
        ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
        num_suffix = f"e{epoch:06d}" if epoch is not None else f"{steps:06d}"
        seed_suffix = "" if seed is None else f"_{seed}"
        prompt_idx = sample_parameter.get("enum", 0)
        save_path = (
            f"{'' if args.output_name is None else args.output_name + '_'}{num_suffix}_{prompt_idx:02d}_{ts_str}{seed_suffix}"
        )
        if video.shape[2] == 1:
            save_images_grid(video, save_dir, save_path, create_subdir=False)
        else:
            save_videos_grid(video, os.path.join(save_dir, save_path) + ".mp4")

        # Move models back to initial state
        vae.to("cpu")
        clean_memory_on_device(device)

    # region model specific

    @property
    def architecture(self) -> str:
        return ARCHITECTURE_HUNYUAN_VIDEO

    @property
    def architecture_full_name(self) -> str:
        return ARCHITECTURE_HUNYUAN_VIDEO_FULL

    def handle_model_specific_args(self, args: argparse.Namespace):
        self.pos_embed_cache = {}

        self._i2v_training = args.dit_in_channels == 32  # may be changed in the future
        if self._i2v_training:
            logger.info("I2V training mode")

        self._control_training = False  # HunyuanVideo does not support control training yet

        self.default_guidance_scale = 6.0
        
    @property
    def i2v_training(self) -> bool:
        return self._i2v_training

    @property
    def control_training(self) -> bool:
        return self._control_training

    def process_sample_prompts(
        self,
        args: argparse.Namespace,
        accelerator: Accelerator,
        sample_prompts: str,
    ):
        text_encoder1, text_encoder2, fp8_llm = args.text_encoder1, args.text_encoder2, args.fp8_llm

        logger.info(f"cache Text Encoder outputs for sample prompt: {sample_prompts}")
        prompts = load_prompts(sample_prompts)

        def encode_for_text_encoder(text_encoder, is_llm=True):
            sample_prompts_te_outputs = {}  # (prompt) -> (embeds, mask)
            with accelerator.autocast(), torch.no_grad():
                for prompt_dict in prompts:
                    for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", None)]:
                        if p is None:
                            continue
                        if p not in sample_prompts_te_outputs:
                            logger.info(f"cache Text Encoder outputs for prompt: {p}")

                            data_type = "video"
                            text_inputs = text_encoder.text2tokens(p, data_type=data_type)

                            prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type)
                            sample_prompts_te_outputs[p] = (prompt_outputs.hidden_state, prompt_outputs.attention_mask)

            return sample_prompts_te_outputs

        # Load Text Encoder 1 and encode
        text_encoder_dtype = torch.float16 if args.text_encoder_dtype is None else model_utils.str_to_dtype(args.text_encoder_dtype)
        logger.info(f"loading text encoder 1: {text_encoder1}")
        text_encoder_1 = text_encoder_module.load_text_encoder_1(text_encoder1, accelerator.device, fp8_llm, text_encoder_dtype)

        logger.info("encoding with Text Encoder 1")
        te_outputs_1 = encode_for_text_encoder(text_encoder_1)
        del text_encoder_1

        # Load Text Encoder 2 and encode
        logger.info(f"loading text encoder 2: {text_encoder2}")
        text_encoder_2 = text_encoder_module.load_text_encoder_2(text_encoder2, accelerator.device, text_encoder_dtype)

        logger.info("encoding with Text Encoder 2")
        te_outputs_2 = encode_for_text_encoder(text_encoder_2, is_llm=False)
        del text_encoder_2

        # prepare sample parameters
        sample_parameters = []
        for prompt_dict in prompts:
            prompt_dict_copy = prompt_dict.copy()

            p = prompt_dict.get("prompt", "")
            prompt_dict_copy["llm_embeds"] = te_outputs_1[p][0]
            prompt_dict_copy["llm_mask"] = te_outputs_1[p][1]
            prompt_dict_copy["clipL_embeds"] = te_outputs_2[p][0]
            prompt_dict_copy["clipL_mask"] = te_outputs_2[p][1]

            p = prompt_dict.get("negative_prompt", None)
            if p is not None:
                prompt_dict_copy["negative_llm_embeds"] = te_outputs_1[p][0]
                prompt_dict_copy["negative_llm_mask"] = te_outputs_1[p][1]
                prompt_dict_copy["negative_clipL_embeds"] = te_outputs_2[p][0]
                prompt_dict_copy["negative_clipL_mask"] = te_outputs_2[p][1]

            sample_parameters.append(prompt_dict_copy)

        clean_memory_on_device(accelerator.device)

        return sample_parameters

    def do_inference(
        self,
        accelerator,
        args,
        sample_parameter,
        vae,
        dit_dtype,
        transformer,
        discrete_flow_shift,
        sample_steps,
        width,
        height,
        frame_count,
        generator,
        do_classifier_free_guidance,
        guidance_scale,
        cfg_scale,
        image_path=None,
        control_video_path=None,
    ):
        """architecture dependent inference"""
        device = accelerator.device
        if cfg_scale is None:
            cfg_scale = 1.0
        do_classifier_free_guidance = do_classifier_free_guidance and cfg_scale != 1.0

        # Prepare scheduler for each prompt
        scheduler = FlowMatchDiscreteScheduler(shift=discrete_flow_shift, reverse=True, solver="euler")

        # Number of inference steps for sampling
        scheduler.set_timesteps(sample_steps, device=device)
        timesteps = scheduler.timesteps

        # Calculate latent video length based on VAE version
        if "884" in VAE_VER:
            latent_video_length = (frame_count - 1) // 4 + 1
        elif "888" in VAE_VER:
            latent_video_length = (frame_count - 1) // 8 + 1
        else:
            latent_video_length = frame_count

        # Get embeddings
        prompt_embeds = sample_parameter["llm_embeds"].to(device=device, dtype=dit_dtype)
        prompt_mask = sample_parameter["llm_mask"].to(device=device)
        prompt_embeds_2 = sample_parameter["clipL_embeds"].to(device=device, dtype=dit_dtype)

        if do_classifier_free_guidance:
            negative_prompt_embeds = sample_parameter["negative_llm_embeds"].to(device=device, dtype=dit_dtype)
            negative_prompt_mask = sample_parameter["negative_llm_mask"].to(device=device)
            negative_prompt_embeds_2 = sample_parameter["negative_clipL_embeds"].to(device=device, dtype=dit_dtype)
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            prompt_mask = torch.cat([negative_prompt_mask, prompt_mask], dim=0)
            prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2], dim=0)

        num_channels_latents = 16  # transformer.config.in_channels
        vae_scale_factor = 2 ** (4 - 1)  # Assuming 4 VAE blocks

        # Initialize latents
        shape_or_frame = (
            1,
            num_channels_latents,
            1,
            height // vae_scale_factor,
            width // vae_scale_factor,
        )
        latents = []
        for _ in range(latent_video_length):
            latents.append(torch.randn(shape_or_frame, generator=generator, device=device, dtype=dit_dtype))
        latents = torch.cat(latents, dim=2)

        if self.i2v_training:
            # Move VAE to the appropriate device for sampling
            vae.to(device)
            vae.eval()

            image = Image.open(image_path)
            image = resize_image_to_bucket(image, (width, height))  # returns a numpy array
            image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).unsqueeze(2).float()  # 1, C, 1, H, W
            image = image / 255.0

            logger.info(f"Encoding image to latents")
            image_latents = encode_to_latents(args, image, device)  # 1, C, 1, H, W
            image_latents = image_latents.to(device=device, dtype=dit_dtype)

            vae.to("cpu")
            clean_memory_on_device(device)

            zero_latents = torch.zeros_like(latents)
            zero_latents[:, :, :1, :, :] = image_latents
            image_latents = zero_latents
        else:
            image_latents = None

        # Guidance scale
        guidance_expand = torch.tensor([guidance_scale * 1000.0], dtype=torch.float32, device=device).to(dit_dtype)

        # Get rotary positional embeddings
        freqs_cos, freqs_sin = get_rotary_pos_embed_by_shape(transformer, latents.shape[2:])
        freqs_cos = freqs_cos.to(device=device, dtype=dit_dtype)
        freqs_sin = freqs_sin.to(device=device, dtype=dit_dtype)

        # Wrap the inner loop with tqdm to track progress over timesteps
        prompt_idx = sample_parameter.get("enum", 0)
        with torch.no_grad():
            for i, t in enumerate(tqdm(timesteps, desc=f"Sampling timesteps for prompt {prompt_idx+1}")):
                latents_input = scheduler.scale_model_input(latents, t)

                if do_classifier_free_guidance:
                    latents_input = torch.cat([latents_input, latents_input], dim=0)  # 2, C, F, H, W

                if image_latents is not None:
                    latents_image_input = (
                        image_latents if not do_classifier_free_guidance else torch.cat([image_latents, image_latents], dim=0)
                    )
                    latents_input = torch.cat([latents_input, latents_image_input], dim=1)  # 1 or 2, C*2, F, H, W

                noise_pred = transformer(
                    latents_input,
                    t.repeat(latents.shape[0]).to(device=device, dtype=dit_dtype),
                    text_states=prompt_embeds,
                    text_mask=prompt_mask,
                    text_states_2=prompt_embeds_2,
                    freqs_cos=freqs_cos,
                    freqs_sin=freqs_sin,
                    guidance=guidance_expand,
                    return_dict=True,
                )["x"]

                # perform classifier free guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + cfg_scale * (noise_pred_cond - noise_pred_uncond)

                # Compute the previous noisy sample x_t -> x_t-1
                latents = scheduler.step(noise_pred, t, latents, return_dict=False)[0]

        # Move VAE to the appropriate device for sampling
        vae.to(device)
        vae.eval()

        # Decode latents to video
        if hasattr(vae.config, "shift_factor") and vae.config.shift_factor:
            latents = latents / vae.config.scaling_factor + vae.config.shift_factor
        else:
            latents = latents / vae.config.scaling_factor

        latents = latents.to(device=device, dtype=vae.dtype)
        with torch.no_grad():
            video = vae.decode(latents, return_dict=False)[0]
        video = (video / 2 + 0.5).clamp(0, 1)
        video = video.cpu().float()

        return video

    def load_vae(self, args: argparse.Namespace, vae_dtype: torch.dtype, vae_path: str):
        vae, _, s_ratio, t_ratio = load_vae(vae_dtype=vae_dtype, device="cpu", vae_path=vae_path)

        if args.vae_chunk_size is not None:
            vae.set_chunk_size_for_causal_conv_3d(args.vae_chunk_size)
            logger.info(f"Set chunk_size to {args.vae_chunk_size} for CausalConv3d in VAE")
        if args.vae_spatial_tile_sample_min_size is not None:
            vae.enable_spatial_tiling(True)
            vae.tile_sample_min_size = args.vae_spatial_tile_sample_min_size
            vae.tile_latent_min_size = args.vae_spatial_tile_sample_min_size // 8
        elif args.vae_tiling:
            vae.enable_spatial_tiling(True)

        return vae

    def load_transformer(
        self,
        accelerator: Accelerator,
        args: argparse.Namespace,
        dit_path: str,
        attn_mode: str,
        split_attn: bool,
        loading_device: str,
        dit_weight_dtype: Optional[torch.dtype],
    ):
        transformer = load_transformer(dit_path, attn_mode, split_attn, loading_device, dit_weight_dtype, args.dit_in_channels)

        if args.img_in_txt_in_offloading:
            logger.info("Enable offloading img_in and txt_in to CPU")
            transformer.enable_img_in_txt_in_offloading()

        return transformer

    def scale_shift_latents(self, latents):
        latents = latents * vae_module.SCALING_FACTOR
        return latents

    def call_dit(
        self,
        args: argparse.Namespace,
        accelerator: Accelerator,
        transformer_arg,
        latents: torch.Tensor,
        batch: dict[str, torch.Tensor],
        noise: torch.Tensor,
        noisy_model_input: torch.Tensor,
        timesteps: torch.Tensor,
        network_dtype: torch.dtype,
    ):
        transformer: HYVideoDiffusionTransformer = transformer_arg
        bsz = latents.shape[0]

        # I2V training
        if self.i2v_training:
            image_latents = torch.zeros_like(latents)
            image_latents[:, :, :1, :, :] = latents[:, :, :1, :, :]
            noisy_model_input = torch.cat([noisy_model_input, image_latents], dim=1)  # concat along channel dim

        # ensure guidance_scale in args is float
        guidance_vec = torch.full((bsz,), float(args.guidance_scale), device=accelerator.device)  # , dtype=dit_dtype)

        # ensure the hidden state will require grad
        if args.gradient_checkpointing:
            noisy_model_input.requires_grad_(True)
            guidance_vec.requires_grad_(True)

        pos_emb_shape = latents.shape[1:]
        if pos_emb_shape not in self.pos_embed_cache:
            freqs_cos, freqs_sin = get_rotary_pos_embed_by_shape(transformer, latents.shape[2:])
            # freqs_cos = freqs_cos.to(device=accelerator.device, dtype=dit_dtype)
            # freqs_sin = freqs_sin.to(device=accelerator.device, dtype=dit_dtype)
            self.pos_embed_cache[pos_emb_shape] = (freqs_cos, freqs_sin)
        else:
            freqs_cos, freqs_sin = self.pos_embed_cache[pos_emb_shape]

        # call DiT
        latents = latents.to(device=accelerator.device, dtype=network_dtype)
        noisy_model_input = noisy_model_input.to(device=accelerator.device, dtype=network_dtype)
        with accelerator.autocast():
            model_pred = transformer(
                noisy_model_input,
                timesteps,
                text_states=batch["llm"],
                text_mask=batch["llm_mask"],
                text_states_2=batch["clipL"],
                freqs_cos=freqs_cos,
                freqs_sin=freqs_sin,
                guidance=guidance_vec,
                return_dict=False,
            )

        # flow matching loss
        target = noise - latents

        return model_pred, target

    # endregion model specific

    def train(self, args):
        # check required arguments
        if args.dataset_config is None:
            raise ValueError("dataset_config is required / dataset_configが必要です")
        if args.dit is None:
            raise ValueError("path to DiT model is required / DiTモデルのパスが必要です")
        assert not args.fp8_scaled or args.fp8_base, "fp8_scaled requires fp8_base / fp8_scaledはfp8_baseが必要です"

        # check model specific arguments
        self.handle_model_specific_args(args)

        # show timesteps for debugging
        if args.show_timesteps:
            self.show_timesteps(args)
            return

        session_id = random.randint(0, 2**32)
        training_started_at = time.time()
        # setup_logging(args, reset=True)

        if args.seed is None:
            args.seed = random.randint(0, 2**32)
        set_seed(args.seed)

        # Load dataset config
        blueprint_generator = BlueprintGenerator(ConfigSanitizer())
        logger.info(f"Load dataset config from {args.dataset_config}")
        user_config = config_utils.load_user_config(args.dataset_config)
        blueprint = blueprint_generator.generate(user_config, args, architecture=self.architecture)
        train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group, training=True)

        current_epoch = Value("i", 0)
        current_step = Value("i", 0)
        ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
        collator = collator_class(current_epoch, current_step, ds_for_collator)

        # prepare accelerator
        logger.info("preparing accelerator")
        accelerator = prepare_accelerator(args)
        is_main_process = accelerator.is_main_process

        # prepare dtype
        weight_dtype = torch.float32
        if args.mixed_precision == "fp16":
            weight_dtype = torch.float16
        elif args.mixed_precision == "bf16":
            weight_dtype = torch.bfloat16

        # HunyuanVideo: bfloat16 or float16, Wan2.1: bfloat16
        dit_dtype = torch.bfloat16 if args.dit_dtype is None else model_utils.str_to_dtype(args.dit_dtype)
        dit_weight_dtype = (None if args.fp8_scaled else torch.float8_e4m3fn) if args.fp8_base else dit_dtype
        logger.info(f"DiT precision: {dit_dtype}, weight precision: {dit_weight_dtype}")

        # get embedding for sampling images
        vae_dtype = torch.float16 if args.vae_dtype is None else model_utils.str_to_dtype(args.vae_dtype)
        sample_parameters = None
        vae = None
        if args.sample_prompts:
            sample_parameters = self.process_sample_prompts(args, accelerator, args.sample_prompts)

            # Load VAE model for sampling images: VAE is loaded to cpu to save gpu memory
            vae = self.load_vae(args, vae_dtype=vae_dtype, vae_path=args.vae)
            vae.requires_grad_(False)
            vae.eval()

        # load DiT model
        blocks_to_swap = args.blocks_to_swap if args.blocks_to_swap else 0
        self.blocks_to_swap = blocks_to_swap
        loading_device = "cpu" if blocks_to_swap > 0 else accelerator.device

        logger.info(f"Loading DiT model from {args.dit}")
        if args.sdpa:
            attn_mode = "torch"
        elif args.flash_attn:
            attn_mode = "flash"
        elif args.sage_attn:
            attn_mode = "sageattn"
        elif args.xformers:
            attn_mode = "xformers"
        elif args.flash3:
            attn_mode = "flash3"
        else:
            raise ValueError(
                f"either --sdpa, --flash-attn, --flash3, --sage-attn or --xformers must be specified / --sdpa, --flash-attn, --flash3, --sage-attn, --xformersのいずれかを指定してください"
            )
        transformer = self.load_transformer(
            accelerator, args, args.dit, attn_mode, args.split_attn, loading_device, dit_weight_dtype
        )
        transformer.eval()
        transformer.requires_grad_(False)

        if blocks_to_swap > 0:
            logger.info(f"enable swap {blocks_to_swap} blocks to CPU from device: {accelerator.device}")
            transformer.enable_block_swap(blocks_to_swap, accelerator.device, supports_backward=True)
            transformer.move_to_device_except_swap_blocks(accelerator.device)

        # load network model for differential training
        sys.path.append(os.path.dirname(__file__))
        accelerator.print("import network module:", args.network_module)
        network_module: lora_module = importlib.import_module(args.network_module)  # actual module may be different

        if args.base_weights is not None:
            # if base_weights is specified, merge the weights to DiT model
            for i, weight_path in enumerate(args.base_weights):
                if args.base_weights_multiplier is None or len(args.base_weights_multiplier) <= i:
                    multiplier = 1.0
                else:
                    multiplier = args.base_weights_multiplier[i]

                accelerator.print(f"merging module: {weight_path} with multiplier {multiplier}")

                weights_sd = load_file(weight_path)
                module = network_module.create_arch_network_from_weights(
                    multiplier, weights_sd, unet=transformer, for_inference=True
                )
                module.merge_to(None, transformer, weights_sd, weight_dtype, "cpu")

            accelerator.print(f"all weights merged: {', '.join(args.base_weights)}")

        # prepare network
        net_kwargs = {}
        if args.network_args is not None:
            for net_arg in args.network_args:
                key, value = net_arg.split("=")
                net_kwargs[key] = value

        if args.dim_from_weights:
            logger.info(f"Loading network from weights: {args.dim_from_weights}")
            weights_sd = load_file(args.dim_from_weights)
            network, _ = network_module.create_arch_network_from_weights(1, weights_sd, unet=transformer)
        else:
            # We use the name create_arch_network for compatibility with LyCORIS
            if hasattr(network_module, "create_arch_network"):
                network = network_module.create_arch_network(
                    1.0,
                    args.network_dim,
                    args.network_alpha,
                    vae,
                    None,
                    transformer,
                    neuron_dropout=args.network_dropout,
                    **net_kwargs,
                )
            else:
                # LyCORIS compatibility
                network = network_module.create_network(
                    1.0,
                    args.network_dim,
                    args.network_alpha,
                    vae,
                    None,
                    transformer,
                    **net_kwargs,
                )
        if network is None:
            return

        if hasattr(network_module, "prepare_network"):
            network.prepare_network(args)

        # apply network to DiT
        network.apply_to(None, transformer, apply_text_encoder=False, apply_unet=True)

        if args.network_weights is not None:
            # FIXME consider alpha of weights: this assumes that the alpha is not changed
            info = network.load_weights(args.network_weights)
            accelerator.print(f"load network weights from {args.network_weights}: {info}")

        if args.gradient_checkpointing:
            transformer.enable_gradient_checkpointing()
            network.enable_gradient_checkpointing()  # may have no effect

        # prepare optimizer, data loader etc.
        accelerator.print("prepare optimizer, data loader etc.")

        trainable_params, lr_descriptions = network.prepare_optimizer_params(unet_lr=args.learning_rate)
        optimizer_name, optimizer_args, optimizer, optimizer_train_fn, optimizer_eval_fn = self.get_optimizer(
            args, trainable_params
        )

        # prepare dataloader

        # num workers for data loader: if 0, persistent_workers is not available
        n_workers = min(args.max_data_loader_n_workers, os.cpu_count())  # cpu_count or max_data_loader_n_workers

        train_dataloader = torch.utils.data.DataLoader(
            train_dataset_group,
            batch_size=1,
            shuffle=True,
            collate_fn=collator,
            num_workers=n_workers,
            persistent_workers=args.persistent_data_loader_workers,
        )

        # calculate max_train_steps
        if args.max_train_epochs is not None:
            args.max_train_steps = args.max_train_epochs * math.ceil(
                len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
            )
            accelerator.print(
                f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
            )

        # send max_train_steps to train_dataset_group
        train_dataset_group.set_max_train_steps(args.max_train_steps)

        # prepare lr_scheduler
        lr_scheduler = self.get_lr_scheduler(args, optimizer, accelerator.num_processes)

        # prepare training model. accelerator does some magic here

        # experimental feature: train the model with gradients in fp16/bf16
        network_dtype = torch.float32
        args.full_fp16 = args.full_bf16 = False  # temporary disabled because stochastic rounding is not supported yet
        if args.full_fp16:
            assert (
                args.mixed_precision == "fp16"
            ), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
            accelerator.print("enable full fp16 training.")
            network_dtype = weight_dtype
            network.to(network_dtype)
        elif args.full_bf16:
            assert (
                args.mixed_precision == "bf16"
            ), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
            accelerator.print("enable full bf16 training.")
            network_dtype = weight_dtype
            network.to(network_dtype)

        if dit_weight_dtype != dit_dtype and dit_weight_dtype is not None:
            logger.info(f"casting model to {dit_weight_dtype}")
            transformer.to(dit_weight_dtype)

        if blocks_to_swap > 0:
            transformer = accelerator.prepare(transformer, device_placement=[not blocks_to_swap > 0])
            accelerator.unwrap_model(transformer).move_to_device_except_swap_blocks(accelerator.device)  # reduce peak memory usage
            accelerator.unwrap_model(transformer).prepare_block_swap_before_forward()
        else:
            transformer = accelerator.prepare(transformer)

        network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(network, optimizer, train_dataloader, lr_scheduler)
        training_model = network

        if args.gradient_checkpointing:
            transformer.train()
        else:
            transformer.eval()

        accelerator.unwrap_model(network).prepare_grad_etc(transformer)

        if args.full_fp16:
            # patch accelerator for fp16 training
            # def patch_accelerator_for_fp16_training(accelerator):
            org_unscale_grads = accelerator.scaler._unscale_grads_

            def _unscale_grads_replacer(optimizer, inv_scale, found_inf, allow_fp16):
                return org_unscale_grads(optimizer, inv_scale, found_inf, True)

            accelerator.scaler._unscale_grads_ = _unscale_grads_replacer

        # before resuming make hook for saving/loading to save/load the network weights only
        def save_model_hook(models, weights, output_dir):
            # pop weights of other models than network to save only network weights
            # only main process or deepspeed https://github.com/huggingface/diffusers/issues/2606
            if accelerator.is_main_process:  # or args.deepspeed:
                remove_indices = []
                for i, model in enumerate(models):
                    if not isinstance(model, type(accelerator.unwrap_model(network))):
                        remove_indices.append(i)
                for i in reversed(remove_indices):
                    if len(weights) > i:
                        weights.pop(i)
                # print(f"save model hook: {len(weights)} weights will be saved")

        def load_model_hook(models, input_dir):
            # remove models except network
            remove_indices = []
            for i, model in enumerate(models):
                if not isinstance(model, type(accelerator.unwrap_model(network))):
                    remove_indices.append(i)
            for i in reversed(remove_indices):
                models.pop(i)
            # print(f"load model hook: {len(models)} models will be loaded")

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

        # resume from local or huggingface. accelerator.step is set
        self.resume_from_local_or_hf_if_specified(accelerator, args)  # accelerator.load_state(args.resume)

        # epoch数を計算する
        num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
        num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

        # 学習する
        # total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

        accelerator.print("running training / 学習開始")
        accelerator.print(f"  num train items / 学習画像、動画数: {train_dataset_group.num_train_items}")
        accelerator.print(f"  num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
        accelerator.print(f"  num epochs / epoch数: {num_train_epochs}")
        accelerator.print(
            f"  batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
        )
        # accelerator.print(f"  total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
        accelerator.print(f"  gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
        accelerator.print(f"  total optimization steps / 学習ステップ数: {args.max_train_steps}")

        # TODO refactor metadata creation and move to util
        metadata = {
            "ss_" "ss_session_id": session_id,  # random integer indicating which group of epochs the model came from
            "ss_training_started_at": training_started_at,  # unix timestamp
            "ss_output_name": args.output_name,
            "ss_learning_rate": args.learning_rate,
            "ss_num_train_items": train_dataset_group.num_train_items,
            "ss_num_batches_per_epoch": len(train_dataloader),
            "ss_num_epochs": num_train_epochs,
            "ss_gradient_checkpointing": args.gradient_checkpointing,
            "ss_gradient_accumulation_steps": args.gradient_accumulation_steps,
            "ss_max_train_steps": args.max_train_steps,
            "ss_lr_warmup_steps": args.lr_warmup_steps,
            "ss_lr_scheduler": args.lr_scheduler,
            SS_METADATA_KEY_BASE_MODEL_VERSION: self.architecture_full_name,
            # "ss_network_module": args.network_module,
            # "ss_network_dim": args.network_dim,  # None means default because another network than LoRA may have another default dim
            # "ss_network_alpha": args.network_alpha,  # some networks may not have alpha
            SS_METADATA_KEY_NETWORK_MODULE: args.network_module,
            SS_METADATA_KEY_NETWORK_DIM: args.network_dim,
            SS_METADATA_KEY_NETWORK_ALPHA: args.network_alpha,
            "ss_network_dropout": args.network_dropout,  # some networks may not have dropout
            "ss_mixed_precision": args.mixed_precision,
            "ss_seed": args.seed,
            "ss_training_comment": args.training_comment,  # will not be updated after training
            # "ss_sd_scripts_commit_hash": train_util.get_git_revision_hash(),
            "ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else ""),
            "ss_max_grad_norm": args.max_grad_norm,
            "ss_fp8_base": bool(args.fp8_base),
            # "ss_fp8_llm": bool(args.fp8_llm), # remove this because this is only for HuanyuanVideo TODO set architecure dependent metadata
            "ss_full_fp16": bool(args.full_fp16),
            "ss_full_bf16": bool(args.full_bf16),
            "ss_weighting_scheme": args.weighting_scheme,
            "ss_logit_mean": args.logit_mean,
            "ss_logit_std": args.logit_std,
            "ss_mode_scale": args.mode_scale,
            "ss_guidance_scale": args.guidance_scale,
            "ss_timestep_sampling": args.timestep_sampling,
            "ss_sigmoid_scale": args.sigmoid_scale,
            "ss_discrete_flow_shift": args.discrete_flow_shift,
        }

        datasets_metadata = []
        # tag_frequency = {}  # merge tag frequency for metadata editor # TODO support tag frequency
        for dataset in train_dataset_group.datasets:
            dataset_metadata = dataset.get_metadata()
            datasets_metadata.append(dataset_metadata)

        metadata["ss_datasets"] = json.dumps(datasets_metadata)

        # add extra args
        if args.network_args:
            # metadata["ss_network_args"] = json.dumps(net_kwargs)
            metadata[SS_METADATA_KEY_NETWORK_ARGS] = json.dumps(net_kwargs)

        # model name and hash
        # calculate hash takes time, so we omit it for now
        if args.dit is not None:
            # logger.info(f"calculate hash for DiT model: {args.dit}")
            logger.info(f"set DiT model name for metadata: {args.dit}")
            sd_model_name = args.dit
            if os.path.exists(sd_model_name):
                # metadata["ss_sd_model_hash"] = model_utils.model_hash(sd_model_name)
                # metadata["ss_new_sd_model_hash"] = model_utils.calculate_sha256(sd_model_name)
                sd_model_name = os.path.basename(sd_model_name)
            metadata["ss_sd_model_name"] = sd_model_name

        if args.vae is not None:
            # logger.info(f"calculate hash for VAE model: {args.vae}")
            logger.info(f"set VAE model name for metadata: {args.vae}")
            vae_name = args.vae
            if os.path.exists(vae_name):
                # metadata["ss_vae_hash"] = model_utils.model_hash(vae_name)
                # metadata["ss_new_vae_hash"] = model_utils.calculate_sha256(vae_name)
                vae_name = os.path.basename(vae_name)
            metadata["ss_vae_name"] = vae_name

        metadata = {k: str(v) for k, v in metadata.items()}

        # make minimum metadata for filtering
        minimum_metadata = {}
        for key in SS_METADATA_MINIMUM_KEYS:
            if key in metadata:
                minimum_metadata[key] = metadata[key]

        if accelerator.is_main_process:
            init_kwargs = {}
            if args.wandb_run_name:
                init_kwargs["wandb"] = {"name": args.wandb_run_name}
            if args.log_tracker_config is not None:
                init_kwargs = toml.load(args.log_tracker_config)
            accelerator.init_trackers(
                "network_train" if args.log_tracker_name is None else args.log_tracker_name,
                config=train_utils.get_sanitized_config_or_none(args),
                init_kwargs=init_kwargs,
            )

        # TODO skip until initial step
        progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")

        epoch_to_start = 0
        global_step = 0
        noise_scheduler = FlowMatchDiscreteScheduler(shift=args.discrete_flow_shift, reverse=True, solver="euler")

        loss_recorder = train_utils.LossRecorder()
        del train_dataset_group

        # function for saving/removing
        save_dtype = dit_dtype

        def save_model(ckpt_name: str, unwrapped_nw, steps, epoch_no, force_sync_upload=False):
            os.makedirs(args.output_dir, exist_ok=True)
            ckpt_file = os.path.join(args.output_dir, ckpt_name)

            accelerator.print(f"\nsaving checkpoint: {ckpt_file}")
            metadata["ss_training_finished_at"] = str(time.time())
            metadata["ss_steps"] = str(steps)
            metadata["ss_epoch"] = str(epoch_no)

            metadata_to_save = minimum_metadata if args.no_metadata else metadata

            title = args.metadata_title if args.metadata_title is not None else args.output_name
            if args.min_timestep is not None or args.max_timestep is not None:
                min_time_step = args.min_timestep if args.min_timestep is not None else 0
                max_time_step = args.max_timestep if args.max_timestep is not None else 1000
                md_timesteps = (min_time_step, max_time_step)
            else:
                md_timesteps = None

            sai_metadata = sai_model_spec.build_metadata(
                None,
                self.architecture,
                time.time(),
                title,
                None,
                args.metadata_author,
                args.metadata_description,
                args.metadata_license,
                args.metadata_tags,
                timesteps=md_timesteps,
            )

            metadata_to_save.update(sai_metadata)

            unwrapped_nw.save_weights(ckpt_file, save_dtype, metadata_to_save)
            if args.huggingface_repo_id is not None:
                huggingface_utils.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload)

        def remove_model(old_ckpt_name):
            old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
            if os.path.exists(old_ckpt_file):
                accelerator.print(f"removing old checkpoint: {old_ckpt_file}")
                os.remove(old_ckpt_file)

        # For --sample_at_first
        if should_sample_images(args, global_step, epoch=0):
            optimizer_eval_fn()
            self.sample_images(accelerator, args, 0, global_step, vae, transformer, sample_parameters, dit_dtype)
            optimizer_train_fn()
        if len(accelerator.trackers) > 0:
            # log empty object to commit the sample images to wandb
            accelerator.log({}, step=0)

        # training loop

        # log device and dtype for each model
        logger.info(f"DiT dtype: {transformer.dtype}, device: {transformer.device}")

        clean_memory_on_device(accelerator.device)

        for epoch in range(epoch_to_start, num_train_epochs):
            accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
            current_epoch.value = epoch + 1

            metadata["ss_epoch"] = str(epoch + 1)

            accelerator.unwrap_model(network).on_epoch_start(transformer)

            for step, batch in enumerate(train_dataloader):
                latents = batch["latents"]
                bsz = latents.shape[0]
                current_step.value = global_step

                with accelerator.accumulate(training_model):
                    accelerator.unwrap_model(network).on_step_start()

                    latents = self.scale_shift_latents(latents)

                    # Sample noise that we'll add to the latents
                    noise = torch.randn_like(latents)

                    # calculate model input and timesteps
                    noisy_model_input, timesteps = self.get_noisy_model_input_and_timesteps(
                        args, noise, latents, noise_scheduler, accelerator.device, dit_dtype
                    )

                    weighting = compute_loss_weighting_for_sd3(
                        args.weighting_scheme, noise_scheduler, timesteps, accelerator.device, dit_dtype
                    )

                    model_pred, target = self.call_dit(
                        args, accelerator, transformer, latents, batch, noise, noisy_model_input, timesteps, network_dtype
                    )
                    loss = torch.nn.functional.mse_loss(model_pred.to(network_dtype), target, reduction="none")

                    if weighting is not None:
                        loss = loss * weighting
                    # loss = loss.mean([1, 2, 3])
                    # # min snr gamma, scale v pred loss like noise pred, v pred like loss, debiased estimation etc.
                    # loss = self.post_process_loss(loss, args, timesteps, noise_scheduler)

                    loss = loss.mean()  # mean loss over all elements in batch

                    accelerator.backward(loss)
                    if accelerator.sync_gradients:
                        # self.all_reduce_network(accelerator, network)  # sync DDP grad manually
                        state = accelerate.PartialState()
                        if state.distributed_type != accelerate.DistributedType.NO:
                            for param in network.parameters():
                                if param.grad is not None:
                                    param.grad = accelerator.reduce(param.grad, reduction="mean")

                        if args.max_grad_norm != 0.0:
                            params_to_clip = accelerator.unwrap_model(network).get_trainable_params()
                            accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)

                    optimizer.step()
                    lr_scheduler.step()
                    optimizer.zero_grad(set_to_none=True)

                if args.scale_weight_norms:
                    keys_scaled, mean_norm, maximum_norm = accelerator.unwrap_model(network).apply_max_norm_regularization(
                        args.scale_weight_norms, accelerator.device
                    )
                    max_mean_logs = {"Keys Scaled": keys_scaled, "Average key norm": mean_norm}
                else:
                    keys_scaled, mean_norm, maximum_norm = None, None, None

                # Checks if the accelerator has performed an optimization step behind the scenes
                if accelerator.sync_gradients:
                    progress_bar.update(1)
                    global_step += 1

                    # to avoid calling optimizer_eval_fn() too frequently, we call it only when we need to sample images or save the model
                    should_sampling = should_sample_images(args, global_step, epoch=None)
                    should_saving = args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0

                    if should_sampling or should_saving:
                        optimizer_eval_fn()
                        if should_sampling:
                            self.sample_images(accelerator, args, None, global_step, vae, transformer, sample_parameters, dit_dtype)

                        if should_saving:
                            accelerator.wait_for_everyone()
                            if accelerator.is_main_process:
                                ckpt_name = train_utils.get_step_ckpt_name(args.output_name, global_step)
                                save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch)

                                if args.save_state:
                                    train_utils.save_and_remove_state_stepwise(args, accelerator, global_step)

                                remove_step_no = train_utils.get_remove_step_no(args, global_step)
                                if remove_step_no is not None:
                                    remove_ckpt_name = train_utils.get_step_ckpt_name(args.output_name, remove_step_no)
                                    remove_model(remove_ckpt_name)
                        optimizer_train_fn()

                current_loss = loss.detach().item()
                loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
                avr_loss: float = loss_recorder.moving_average
                logs = {"avr_loss": avr_loss}  # , "lr": lr_scheduler.get_last_lr()[0]}
                progress_bar.set_postfix(**logs)

                if args.scale_weight_norms:
                    progress_bar.set_postfix(**{**max_mean_logs, **logs})

                if len(accelerator.trackers) > 0:
                    logs = self.generate_step_logs(
                        args, current_loss, avr_loss, lr_scheduler, lr_descriptions, optimizer, keys_scaled, mean_norm, maximum_norm
                    )
                    accelerator.log(logs, step=global_step)

                if global_step >= args.max_train_steps:
                    break

            if len(accelerator.trackers) > 0:
                logs = {"loss/epoch": loss_recorder.moving_average}
                accelerator.log(logs, step=epoch + 1)

            accelerator.wait_for_everyone()

            # save model at the end of epoch if needed
            optimizer_eval_fn()
            if args.save_every_n_epochs is not None:
                saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs
                if is_main_process and saving:
                    ckpt_name = train_utils.get_epoch_ckpt_name(args.output_name, epoch + 1)
                    save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch + 1)

                    remove_epoch_no = train_utils.get_remove_epoch_no(args, epoch + 1)
                    if remove_epoch_no is not None:
                        remove_ckpt_name = train_utils.get_epoch_ckpt_name(args.output_name, remove_epoch_no)
                        remove_model(remove_ckpt_name)

                    if args.save_state:
                        train_utils.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1)

            self.sample_images(accelerator, args, epoch + 1, global_step, vae, transformer, sample_parameters, dit_dtype)
            optimizer_train_fn()

            # end of epoch

        # metadata["ss_epoch"] = str(num_train_epochs)
        metadata["ss_training_finished_at"] = str(time.time())

        if is_main_process:
            network = accelerator.unwrap_model(network)

        accelerator.end_training()
        optimizer_eval_fn()

        if is_main_process and (args.save_state or args.save_state_on_train_end):
            train_utils.save_state_on_train_end(args, accelerator)

        if is_main_process:
            ckpt_name = train_utils.get_last_ckpt_name(args.output_name)
            save_model(ckpt_name, network, global_step, num_train_epochs, force_sync_upload=True)

            logger.info("model saved.")


def setup_parser_common() -> argparse.ArgumentParser:
    def int_or_float(value):
        if value.endswith("%"):
            try:
                return float(value[:-1]) / 100.0
            except ValueError:
                raise argparse.ArgumentTypeError(f"Value '{value}' is not a valid percentage")
        try:
            float_value = float(value)
            if float_value >= 1 and float_value.is_integer():
                return int(value)
            return float(value)
        except ValueError:
            raise argparse.ArgumentTypeError(f"'{value}' is not an int or float")

    parser = argparse.ArgumentParser()

    # general settings
    parser.add_argument(
        "--config_file",
        type=str,
        default=None,
        help="using .toml instead of args to pass hyperparameter / ハイパーパラメータを引数ではなく.tomlファイルで渡す",
    )
    parser.add_argument(
        "--dataset_config",
        type=pathlib.Path,
        default=None,
        help="config file for dataset / データセットの設定ファイル",
    )

    # training settings
    parser.add_argument(
        "--sdpa",
        action="store_true",
        help="use sdpa for CrossAttention (requires PyTorch 2.0) / CrossAttentionにsdpaを使う(PyTorch 2.0が必要)",
    )
    parser.add_argument(
        "--flash_attn",
        action="store_true",
        help="use FlashAttention for CrossAttention, requires FlashAttention / CrossAttentionにFlashAttentionを使う、FlashAttentionが必要",
    )
    parser.add_argument(
        "--sage_attn",
        action="store_true",
        help="use SageAttention. requires SageAttention / SageAttentionを使う。SageAttentionが必要",
    )
    parser.add_argument(
        "--xformers",
        action="store_true",
        help="use xformers for CrossAttention, requires xformers / CrossAttentionにxformersを使う、xformersが必要",
    )
    parser.add_argument(
        "--flash3",
        action="store_true",
        help="use FlashAttention 3 for CrossAttention, requires FlashAttention 3, HunyuanVideo does not support this yet"
        " / CrossAttentionにFlashAttention 3を使う、FlashAttention 3が必要。HunyuanVideoは未対応。",
    )
    parser.add_argument(
        "--split_attn",
        action="store_true",
        help="use split attention for attention calculation (split batch size=1, affects memory usage and speed)"
        " / attentionを分割して計算する(バッチサイズ=1に分割、メモリ使用量と速度に影響)",
    )

    parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数")
    parser.add_argument(
        "--max_train_epochs",
        type=int,
        default=None,
        help="training epochs (overrides max_train_steps) / 学習エポック数(max_train_stepsを上書きします)",
    )
    parser.add_argument(
        "--max_data_loader_n_workers",
        type=int,
        default=8,
        help="max num workers for DataLoader (lower is less main RAM usage, faster epoch start and slower data loading) / DataLoaderの最大プロセス数(小さい値ではメインメモリの使用量が減りエポック間の待ち時間が減りますが、データ読み込みは遅くなります)",
    )
    parser.add_argument(
        "--persistent_data_loader_workers",
        action="store_true",
        help="persistent DataLoader workers (useful for reduce time gap between epoch, but may use more memory) / DataLoader のワーカーを持続させる (エポック間の時間差を少なくするのに有効だが、より多くのメモリを消費する可能性がある)",
    )
    parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed")
    parser.add_argument(
        "--gradient_checkpointing", action="store_true", help="enable gradient checkpointing / gradient checkpointingを有効にする"
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数",
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help="use mixed precision / 混合精度を使う場合、その精度",
    )

    parser.add_argument(
        "--logging_dir",
        type=str,
        default=None,
        help="enable logging and output TensorBoard log to this directory / ログ出力を有効にしてこのディレクトリにTensorBoard用のログを出力する",
    )
    parser.add_argument(
        "--log_with",
        type=str,
        default=None,
        choices=["tensorboard", "wandb", "all"],
        help="what logging tool(s) to use (if 'all', TensorBoard and WandB are both used) / ログ出力に使用するツール (allを指定するとTensorBoardとWandBの両方が使用される)",
    )
    parser.add_argument(
        "--log_prefix", type=str, default=None, help="add prefix for each log directory / ログディレクトリ名の先頭に追加する文字列"
    )
    parser.add_argument(
        "--log_tracker_name",
        type=str,
        default=None,
        help="name of tracker to use for logging, default is script-specific default name / ログ出力に使用するtrackerの名前、省略時はスクリプトごとのデフォルト名",
    )
    parser.add_argument(
        "--wandb_run_name",
        type=str,
        default=None,
        help="The name of the specific wandb session / wandb ログに表示される特定の実行の名前",
    )
    parser.add_argument(
        "--log_tracker_config",
        type=str,
        default=None,
        help="path to tracker config file to use for logging / ログ出力に使用するtrackerの設定ファイルのパス",
    )
    parser.add_argument(
        "--wandb_api_key",
        type=str,
        default=None,
        help="specify WandB API key to log in before starting training (optional). / WandB APIキーを指定して学習開始前にログインする(オプション)",
    )
    parser.add_argument("--log_config", action="store_true", help="log training configuration / 学習設定をログに出力する")

    parser.add_argument(
        "--ddp_timeout",
        type=int,
        default=None,
        help="DDP timeout (min, None for default of accelerate) / DDPのタイムアウト(分、Noneでaccelerateのデフォルト)",
    )
    parser.add_argument(
        "--ddp_gradient_as_bucket_view",
        action="store_true",
        help="enable gradient_as_bucket_view for DDP / DDPでgradient_as_bucket_viewを有効にする",
    )
    parser.add_argument(
        "--ddp_static_graph",
        action="store_true",
        help="enable static_graph for DDP / DDPでstatic_graphを有効にする",
    )

    parser.add_argument(
        "--sample_every_n_steps",
        type=int,
        default=None,
        help="generate sample images every N steps / 学習中のモデルで指定ステップごとにサンプル出力する",
    )
    parser.add_argument(
        "--sample_at_first", action="store_true", help="generate sample images before training / 学習前にサンプル出力する"
    )
    parser.add_argument(
        "--sample_every_n_epochs",
        type=int,
        default=None,
        help="generate sample images every N epochs (overwrites n_steps) / 学習中のモデルで指定エポックごとにサンプル出力する(ステップ数指定を上書きします)",
    )
    parser.add_argument(
        "--sample_prompts",
        type=str,
        default=None,
        help="file for prompts to generate sample images / 学習中モデルのサンプル出力用プロンプトのファイル",
    )

    # optimizer and lr scheduler settings
    parser.add_argument(
        "--optimizer_type",
        type=str,
        default="",
        help="Optimizer to use / オプティマイザの種類: AdamW (default), AdamW8bit, AdaFactor. "
        "Also, you can use any optimizer by specifying the full path to the class, like 'torch.optim.AdamW', 'bitsandbytes.optim.AdEMAMix8bit' or 'bitsandbytes.optim.PagedAdEMAMix8bit' etc. / ",
    )
    parser.add_argument(
        "--optimizer_args",
        type=str,
        default=None,
        nargs="*",
        help='additional arguments for optimizer (like "weight_decay=0.01 betas=0.9,0.999 ...") / オプティマイザの追加引数(例: "weight_decay=0.01 betas=0.9,0.999 ...")',
    )
    parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率")
    parser.add_argument(
        "--max_grad_norm",
        default=1.0,
        type=float,
        help="Max gradient norm, 0 for no clipping / 勾配正規化の最大norm、0でclippingを行わない",
    )

    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help="scheduler to use for learning rate / 学習率のスケジューラ: linear, cosine, cosine_with_restarts, polynomial, constant (default), constant_with_warmup, adafactor",
    )
    parser.add_argument(
        "--lr_warmup_steps",
        type=int_or_float,
        default=0,
        help="Int number of steps for the warmup in the lr scheduler (default is 0) or float with ratio of train steps"
        " / 学習率のスケジューラをウォームアップするステップ数(デフォルト0)、または学習ステップの比率(1未満のfloat値の場合)",
    )
    parser.add_argument(
        "--lr_decay_steps",
        type=int_or_float,
        default=0,
        help="Int number of steps for the decay in the lr scheduler (default is 0) or float (<1) with ratio of train steps"
        " / 学習率のスケジューラを減衰させるステップ数(デフォルト0)、または学習ステップの比率(1未満のfloat値の場合)",
    )
    parser.add_argument(
        "--lr_scheduler_num_cycles",
        type=int,
        default=1,
        help="Number of restarts for cosine scheduler with restarts / cosine with restartsスケジューラでのリスタート回数",
    )
    parser.add_argument(
        "--lr_scheduler_power",
        type=float,
        default=1,
        help="Polynomial power for polynomial scheduler / polynomialスケジューラでのpolynomial power",
    )
    parser.add_argument(
        "--lr_scheduler_timescale",
        type=int,
        default=None,
        help="Inverse sqrt timescale for inverse sqrt scheduler,defaults to `num_warmup_steps`"
        + " / 逆平方根スケジューラのタイムスケール、デフォルトは`num_warmup_steps`",
    )
    parser.add_argument(
        "--lr_scheduler_min_lr_ratio",
        type=float,
        default=None,
        help="The minimum learning rate as a ratio of the initial learning rate for cosine with min lr scheduler and warmup decay scheduler"
        + " / 初期学習率の比率としての最小学習率を指定する、cosine with min lr と warmup decay スケジューラ で有効",
    )
    parser.add_argument("--lr_scheduler_type", type=str, default="", help="custom scheduler module / 使用するスケジューラ")
    parser.add_argument(
        "--lr_scheduler_args",
        type=str,
        default=None,
        nargs="*",
        help='additional arguments for scheduler (like "T_max=100") / スケジューラの追加引数(例: "T_max100")',
    )

    parser.add_argument("--fp8_base", action="store_true", help="use fp8 for base model / base modelにfp8を使う")
    # parser.add_argument("--full_fp16", action="store_true", help="fp16 training including gradients / 勾配も含めてfp16で学習する")
    # parser.add_argument("--full_bf16", action="store_true", help="bf16 training including gradients / 勾配も含めてbf16で学習する")

    parser.add_argument(
        "--dynamo_backend",
        type=str,
        default="NO",
        choices=[e.value for e in DynamoBackend],
        help="dynamo backend type (default is None) / dynamoのbackendの種類(デフォルトは None)",
    )

    parser.add_argument(
        "--dynamo_mode",
        type=str,
        default=None,
        choices=["default", "reduce-overhead", "max-autotune"],
        help="dynamo mode (default is default) / dynamoのモード(デフォルトは default)",
    )

    parser.add_argument(
        "--dynamo_fullgraph",
        action="store_true",
        help="use fullgraph mode for dynamo / dynamoのfullgraphモードを使う",
    )

    parser.add_argument(
        "--dynamo_dynamic",
        action="store_true",
        help="use dynamic mode for dynamo / dynamoのdynamicモードを使う",
    )

    parser.add_argument(
        "--blocks_to_swap",
        type=int,
        default=None,
        help="number of blocks to swap in the model, max XXX / モデル内のブロックの数、最大XXX",
    )
    parser.add_argument(
        "--img_in_txt_in_offloading",
        action="store_true",
        help="offload img_in and txt_in to cpu / img_inとtxt_inをCPUにオフロードする",
    )

    # parser.add_argument("--flow_shift", type=float, default=7.0, help="Shift factor for flow matching schedulers")
    parser.add_argument(
        "--guidance_scale", type=float, default=1.0, help="Embeded classifier free guidance scale (HunyuanVideo only)."
    )
    parser.add_argument(
        "--timestep_sampling",
        choices=["sigma", "uniform", "sigmoid", "shift"],
        default="sigma",
        help="Method to sample timesteps: sigma-based, uniform random, sigmoid of random normal and shift of sigmoid."
        " / タイムステップをサンプリングする方法:sigma、random uniform、random normalのsigmoid、sigmoidのシフト。",
    )
    parser.add_argument(
        "--discrete_flow_shift",
        type=float,
        default=1.0,
        help="Discrete flow shift for the Euler Discrete Scheduler, default is 1.0. / Euler Discrete Schedulerの離散フローシフト、デフォルトは1.0。",
    )
    parser.add_argument(
        "--sigmoid_scale",
        type=float,
        default=1.0,
        help='Scale factor for sigmoid timestep sampling (only used when timestep-sampling is "sigmoid" or "shift"). / sigmoidタイムステップサンプリングの倍率(timestep-samplingが"sigmoid"または"shift"の場合のみ有効)。',
    )
    parser.add_argument(
        "--weighting_scheme",
        type=str,
        default="none",
        choices=["logit_normal", "mode", "cosmap", "sigma_sqrt", "none"],
        help="weighting scheme for timestep distribution. Default is none"
        " / タイムステップ分布の重み付けスキーム、デフォルトはnone",
    )
    parser.add_argument(
        "--logit_mean",
        type=float,
        default=0.0,
        help="mean to use when using the `'logit_normal'` weighting scheme / `'logit_normal'`重み付けスキームを使用する場合の平均",
    )
    parser.add_argument(
        "--logit_std",
        type=float,
        default=1.0,
        help="std to use when using the `'logit_normal'` weighting scheme / `'logit_normal'`重み付けスキームを使用する場合のstd",
    )
    parser.add_argument(
        "--mode_scale",
        type=float,
        default=1.29,
        help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme` / モード重み付けスキームのスケール",
    )
    parser.add_argument(
        "--min_timestep",
        type=int,
        default=None,
        help="set minimum time step for training (0~999, default is 0) / 学習時のtime stepの最小値を設定する(0~999で指定、省略時はデフォルト値(0)) ",
    )
    parser.add_argument(
        "--max_timestep",
        type=int,
        default=None,
        help="set maximum time step for training (1~1000, default is 1000) / 学習時のtime stepの最大値を設定する(1~1000で指定、省略時はデフォルト値(1000))",
    )

    parser.add_argument(
        "--show_timesteps",
        type=str,
        default=None,
        choices=["image", "console"],
        help="show timesteps in image or console, and return to console / タイムステップを画像またはコンソールに表示し、コンソールに戻る",
    )

    # network settings
    parser.add_argument(
        "--no_metadata", action="store_true", help="do not save metadata in output model / メタデータを出力先モデルに保存しない"
    )
    parser.add_argument(
        "--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み"
    )
    parser.add_argument(
        "--network_module", type=str, default=None, help="network module to train / 学習対象のネットワークのモジュール"
    )
    parser.add_argument(
        "--network_dim",
        type=int,
        default=None,
        help="network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)",
    )
    parser.add_argument(
        "--network_alpha",
        type=float,
        default=1,
        help="alpha for LoRA weight scaling, default 1 (same as network_dim for same behavior as old version) / LoRaの重み調整のalpha値、デフォルト1(旧バージョンと同じ動作をするにはnetwork_dimと同じ値を指定)",
    )
    parser.add_argument(
        "--network_dropout",
        type=float,
        default=None,
        help="Drops neurons out of training every step (0 or None is default behavior (no dropout), 1 would drop all neurons) / 訓練時に毎ステップでニューロンをdropする(0またはNoneはdropoutなし、1は全ニューロンをdropout)",
    )
    parser.add_argument(
        "--network_args",
        type=str,
        default=None,
        nargs="*",
        help="additional arguments for network (key=value) / ネットワークへの追加の引数",
    )
    parser.add_argument(
        "--training_comment",
        type=str,
        default=None,
        help="arbitrary comment string stored in metadata / メタデータに記録する任意のコメント文字列",
    )
    parser.add_argument(
        "--dim_from_weights",
        action="store_true",
        help="automatically determine dim (rank) from network_weights / dim (rank)をnetwork_weightsで指定した重みから自動で決定する",
    )
    parser.add_argument(
        "--scale_weight_norms",
        type=float,
        default=None,
        help="Scale the weight of each key pair to help prevent overtraing via exploding gradients. (1 is a good starting point) / 重みの値をスケーリングして勾配爆発を防ぐ(1が初期値としては適当)",
    )
    parser.add_argument(
        "--base_weights",
        type=str,
        default=None,
        nargs="*",
        help="network weights to merge into the model before training / 学習前にあらかじめモデルにマージするnetworkの重みファイル",
    )
    parser.add_argument(
        "--base_weights_multiplier",
        type=float,
        default=None,
        nargs="*",
        help="multiplier for network weights to merge into the model before training / 学習前にあらかじめモデルにマージするnetworkの重みの倍率",
    )

    # save and load settings
    parser.add_argument(
        "--output_dir", type=str, default=None, help="directory to output trained model / 学習後のモデル出力先ディレクトリ"
    )
    parser.add_argument(
        "--output_name",
        type=str,
        default=None,
        help="base name of trained model file / 学習後のモデルの拡張子を除くファイル名",
    )
    parser.add_argument("--resume", type=str, default=None, help="saved state to resume training / 学習再開するモデルのstate")

    parser.add_argument(
        "--save_every_n_epochs",
        type=int,
        default=None,
        help="save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存する",
    )
    parser.add_argument(
        "--save_every_n_steps",
        type=int,
        default=None,
        help="save checkpoint every N steps / 学習中のモデルを指定ステップごとに保存する",
    )
    parser.add_argument(
        "--save_last_n_epochs",
        type=int,
        default=None,
        help="save last N checkpoints when saving every N epochs (remove older checkpoints) / 指定エポックごとにモデルを保存するとき最大Nエポック保存する(古いチェックポイントは削除する)",
    )
    parser.add_argument(
        "--save_last_n_epochs_state",
        type=int,
        default=None,
        help="save last N checkpoints of state (overrides the value of --save_last_n_epochs)/ 最大Nエポックstateを保存する(--save_last_n_epochsの指定を上書きする)",
    )
    parser.add_argument(
        "--save_last_n_steps",
        type=int,
        default=None,
        help="save checkpoints until N steps elapsed (remove older checkpoints if N steps elapsed) / 指定ステップごとにモデルを保存するとき、このステップ数経過するまで保存する(このステップ数経過したら削除する)",
    )
    parser.add_argument(
        "--save_last_n_steps_state",
        type=int,
        default=None,
        help="save states until N steps elapsed (remove older states if N steps elapsed, overrides --save_last_n_steps) / 指定ステップごとにstateを保存するとき、このステップ数経過するまで保存する(このステップ数経過したら削除する。--save_last_n_stepsを上書きする)",
    )
    parser.add_argument(
        "--save_state",
        action="store_true",
        help="save training state additionally (including optimizer states etc.) when saving model / optimizerなど学習状態も含めたstateをモデル保存時に追加で保存する",
    )
    parser.add_argument(
        "--save_state_on_train_end",
        action="store_true",
        help="save training state (including optimizer states etc.) on train end even if --save_state is not specified"
        " / --save_stateが未指定時にもoptimizerなど学習状態も含めたstateを学習終了時に保存する",
    )

    # SAI Model spec
    parser.add_argument(
        "--metadata_title",
        type=str,
        default=None,
        help="title for model metadata (default is output_name) / メタデータに書き込まれるモデルタイトル、省略時はoutput_name",
    )
    parser.add_argument(
        "--metadata_author",
        type=str,
        default=None,
        help="author name for model metadata / メタデータに書き込まれるモデル作者名",
    )
    parser.add_argument(
        "--metadata_description",
        type=str,
        default=None,
        help="description for model metadata / メタデータに書き込まれるモデル説明",
    )
    parser.add_argument(
        "--metadata_license",
        type=str,
        default=None,
        help="license for model metadata / メタデータに書き込まれるモデルライセンス",
    )
    parser.add_argument(
        "--metadata_tags",
        type=str,
        default=None,
        help="tags for model metadata, separated by comma / メタデータに書き込まれるモデルタグ、カンマ区切り",
    )

    # huggingface settings
    parser.add_argument(
        "--huggingface_repo_id",
        type=str,
        default=None,
        help="huggingface repo name to upload / huggingfaceにアップロードするリポジトリ名",
    )
    parser.add_argument(
        "--huggingface_repo_type",
        type=str,
        default=None,
        help="huggingface repo type to upload / huggingfaceにアップロードするリポジトリの種類",
    )
    parser.add_argument(
        "--huggingface_path_in_repo",
        type=str,
        default=None,
        help="huggingface model path to upload files / huggingfaceにアップロードするファイルのパス",
    )
    parser.add_argument("--huggingface_token", type=str, default=None, help="huggingface token / huggingfaceのトークン")
    parser.add_argument(
        "--huggingface_repo_visibility",
        type=str,
        default=None,
        help="huggingface repository visibility ('public' for public, 'private' or None for private) / huggingfaceにアップロードするリポジトリの公開設定('public'で公開、'private'またはNoneで非公開)",
    )
    parser.add_argument(
        "--save_state_to_huggingface", action="store_true", help="save state to huggingface / huggingfaceにstateを保存する"
    )
    parser.add_argument(
        "--resume_from_huggingface",
        action="store_true",
        help="resume from huggingface (ex: --resume {repo_id}/{path_in_repo}:{revision}:{repo_type}) / huggingfaceから学習を再開する(例: --resume {repo_id}/{path_in_repo}:{revision}:{repo_type})",
    )
    parser.add_argument(
        "--async_upload",
        action="store_true",
        help="upload to huggingface asynchronously / huggingfaceに非同期でアップロードする",
    )

    parser.add_argument("--dit", type=str, help="DiT checkpoint path / DiTのチェックポイントのパス")
    parser.add_argument("--vae", type=str, help="VAE checkpoint path / VAEのチェックポイントのパス")
    parser.add_argument("--vae_dtype", type=str, default=None, help="data type for VAE, default is float16")

    return parser


def read_config_from_file(args: argparse.Namespace, parser: argparse.ArgumentParser):
    if not args.config_file:
        return args

    config_path = args.config_file + ".toml" if not args.config_file.endswith(".toml") else args.config_file

    if not os.path.exists(config_path):
        logger.info(f"{config_path} not found.")
        exit(1)

    logger.info(f"Loading settings from {config_path}...")
    with open(config_path, "r", encoding="utf-8") as f:
        config_dict = toml.load(f)

    # combine all sections into one
    ignore_nesting_dict = {}
    for section_name, section_dict in config_dict.items():
        # if value is not dict, save key and value as is
        if not isinstance(section_dict, dict):
            ignore_nesting_dict[section_name] = section_dict
            continue

        # if value is dict, save all key and value into one dict
        for key, value in section_dict.items():
            ignore_nesting_dict[key] = value

    config_args = argparse.Namespace(**ignore_nesting_dict)
    args = parser.parse_args(namespace=config_args)
    args.config_file = os.path.splitext(args.config_file)[0]
    logger.info(args.config_file)

    return args


def hv_setup_parser(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
    """HunyuanVideo specific parser setup"""
    # model settings
    parser.add_argument("--dit_dtype", type=str, default=None, help="data type for DiT, default is bfloat16")
    parser.add_argument("--dit_in_channels", type=int, default=16, help="input channels for DiT, default is 16, skyreels I2V is 32")
    parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for LLM / LLMにfp8を使う")
    parser.add_argument("--text_encoder1", type=str, help="Text Encoder 1 directory / テキストエンコーダ1のディレクトリ")
    parser.add_argument("--text_encoder2", type=str, help="Text Encoder 2 directory / テキストエンコーダ2のディレクトリ")
    parser.add_argument("--text_encoder_dtype", type=str, default=None, help="data type for Text Encoder, default is float16")
    parser.add_argument(
        "--vae_tiling",
        action="store_true",
        help="enable spatial tiling for VAE, default is False. If vae_spatial_tile_sample_min_size is set, this is automatically enabled."
        " / VAEの空間タイリングを有効にする、デフォルトはFalse。vae_spatial_tile_sample_min_sizeが設定されている場合、自動的に有効になります。",
    )
    parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
    parser.add_argument(
        "--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
    )
    return parser


if __name__ == "__main__":
    parser = setup_parser_common()
    parser = hv_setup_parser(parser)

    args = parser.parse_args()
    args = read_config_from_file(args, parser)

    args.fp8_scaled = False  # HunyuanVideo does not support this yet

    trainer = NetworkTrainer()
    trainer.train(args)