File size: 33,946 Bytes
ef46f0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
> ð Click on the language section to expand / èšèªãã¯ãªãã¯ããŠå±é
# Wan 2.1
## Overview / æŠèŠ
This is an unofficial training and inference script for [Wan2.1](https://github.com/Wan-Video/Wan2.1). The features are as follows.
- fp8 support and memory reduction by block swap: Inference of a 720x1280x81frames videos with 24GB VRAM, training with 720x1280 images with 24GB VRAM
- Inference without installing Flash attention (using PyTorch's scaled dot product attention)
- Supports xformers and Sage attention
This feature is experimental.
<details>
<summary>æ¥æ¬èª</summary>
[Wan2.1](https://github.com/Wan-Video/Wan2.1) ã®éå
¬åŒã®åŠç¿ããã³æšè«ã¹ã¯ãªããã§ãã
以äžã®ç¹åŸŽããããŸãã
- fp8察å¿ããã³block swapã«ããçã¡ã¢ãªåïŒ720x1280x81framesã®åç»ã24GB VRAMã§æšè«å¯èœã720x1280ã®ç»åã§ã®åŠç¿ã24GB VRAMã§å¯èœ
- Flash attentionã®ã€ã³ã¹ããŒã«ãªãã§ã®å®è¡ïŒPyTorchã®scaled dot product attentionã䜿çšïŒ
- xformersããã³Sage attention察å¿
ãã®æ©èœã¯å®éšçãªãã®ã§ãã
</details>
## Download the model / ã¢ãã«ã®ããŠã³ããŒã
Download the T5 `models_t5_umt5-xxl-enc-bf16.pth` and CLIP `models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth` from the following page: https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P/tree/main
Download the VAE from the above page `Wan2.1_VAE.pth` or download `split_files/vae/wan_2.1_vae.safetensors` from the following page: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/vae
Download the DiT weights from the following page: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/diffusion_models
Wan2.1 Fun Control model weights can be downloaded from [here](https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-Control). Navigate to each weight page and download. The Fun Control model seems to support not only T2V but also I2V tasks.
Please select the appropriate weights according to T2V, I2V, resolution, model size, etc.
`fp16` and `bf16` models can be used, and `fp8_e4m3fn` models can be used if `--fp8` (or `--fp8_base`) is specified without specifying `--fp8_scaled`. **Please note that `fp8_scaled` models are not supported even with `--fp8_scaled`.**
(Thanks to Comfy-Org for providing the repackaged weights.)
### Model support matrix / ã¢ãã«ãµããŒããããªãã¯ã¹
* columns: training dtype (è¡ïŒåŠç¿æã®ããŒã¿å)
* rows: model dtype (åïŒã¢ãã«ã®ããŒã¿å)
| model \ training |bf16|fp16|--fp8_base|--fp8base & --fp8_scaled|
|--|--|--|--|--|
|bf16|â|--|â|â|
|fp16|--|â|â|â|
|fp8_e4m3fn|--|--|â|--|
|fp8_scaled|--|--|--|--|
<details>
<summary>æ¥æ¬èª</summary>
T5 `models_t5_umt5-xxl-enc-bf16.pth` ããã³CLIP `models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth` ããæ¬¡ã®ããŒãžããããŠã³ããŒãããŠãã ããïŒhttps://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P/tree/main
VAEã¯äžã®ããŒãžãã `Wan2.1_VAE.pth` ãããŠã³ããŒãããããæ¬¡ã®ããŒãžãã `split_files/vae/wan_2.1_vae.safetensors` ãããŠã³ããŒãããŠãã ããïŒhttps://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/vae
DiTã®éã¿ã次ã®ããŒãžããããŠã³ããŒãããŠãã ããïŒhttps://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/diffusion_models
Wan2.1 Fun Controlã¢ãã«ã®éã¿ã¯ã[ãã¡ã](https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-Control)ãããããããã®éã¿ã®ããŒãžã«é·ç§»ããããŠã³ããŒãããŠãã ãããFun Controlã¢ãã«ã¯T2Vã ãã§ãªãI2Vã¿ã¹ã¯ã«ã察å¿ããŠããããã§ãã
T2VãI2Vãè§£å床ãã¢ãã«ãµã€ãºãªã©ã«ããé©åãªéã¿ãéžæããŠãã ããã
`fp16` ããã³ `bf16` ã¢ãã«ã䜿çšã§ããŸãããŸãã`--fp8` ïŒãŸãã¯`--fp8_base`ïŒãæå®ã`--fp8_scaled`ãæå®ãããªããšãã«ã¯ `fp8_e4m3fn` ã¢ãã«ã䜿çšã§ããŸãã**`fp8_scaled` ã¢ãã«ã¯ãããã®å ŽåããµããŒããããŠããŸããã®ã§ã泚æãã ããã**
ïŒrepackagedçã®éã¿ãæäŸããŠãã ãã£ãŠããComfy-Orgã«æè¬ããããŸããïŒ
</details>
## Pre-caching / äºåãã£ãã·ã¥
### Latent Pre-caching
Latent pre-caching is almost the same as in HunyuanVideo. Create the cache using the following command:
```bash
python wan_cache_latents.py --dataset_config path/to/toml --vae path/to/wan_2.1_vae.safetensors
```
If you train I2V models, add `--clip path/to/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth` to specify the CLIP model. If not specified, the training will raise an error.
If you're running low on VRAM, specify `--vae_cache_cpu` to use the CPU for the VAE internal cache, which will reduce VRAM usage somewhat.
The control video settings are required for training the Fun-Control model. Please refer to [Dataset Settings](/dataset/dataset_config.md#sample-for-video-dataset-with-control-images) for details.
<details>
<summary>æ¥æ¬èª</summary>
latentã®äºåãã£ãã·ã³ã°ã¯HunyuanVideoãšã»ãŒåãã§ããäžã®ã³ãã³ãäŸã䜿çšããŠãã£ãã·ã¥ãäœæããŠãã ããã
I2Vã¢ãã«ãåŠç¿ããå Žåã¯ã`--clip path/to/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth` ã远å ããŠCLIPã¢ãã«ãæå®ããŠãã ãããæå®ããªããšåŠç¿æã«ãšã©ãŒãçºçããŸãã
VRAMãäžè¶³ããŠããå Žåã¯ã`--vae_cache_cpu` ãæå®ãããšVAEã®å
éšãã£ãã·ã¥ã«CPUã䜿ãããšã§ã䜿çšVRAMãå€å°åæžã§ããŸãã
Fun-Controlã¢ãã«ãåŠç¿ããå Žåã¯ãå¶åŸ¡çšåç»ã®èšå®ãå¿
èŠã§ãã[ããŒã¿ã»ããèšå®](/dataset/dataset_config.md#sample-for-video-dataset-with-control-images)ãåç
§ããŠãã ããã
</details>
### Text Encoder Output Pre-caching
Text encoder output pre-caching is also almost the same as in HunyuanVideo. Create the cache using the following command:
```bash
python wan_cache_text_encoder_outputs.py --dataset_config path/to/toml --t5 path/to/models_t5_umt5-xxl-enc-bf16.pth --batch_size 16
```
Adjust `--batch_size` according to your available VRAM.
For systems with limited VRAM (less than ~16GB), use `--fp8_t5` to run the T5 in fp8 mode.
<details>
<summary>æ¥æ¬èª</summary>
ããã¹ããšã³ã³ãŒãåºåã®äºåãã£ãã·ã³ã°ãHunyuanVideoãšã»ãŒåãã§ããäžã®ã³ãã³ãäŸã䜿çšããŠãã£ãã·ã¥ãäœæããŠãã ããã
䜿çšå¯èœãªVRAMã«åãã㊠`--batch_size` ã調æŽããŠãã ããã
VRAMãéãããŠããã·ã¹ãã ïŒçŽ16GBæªæºïŒã®å Žåã¯ãT5ãfp8ã¢ãŒãã§å®è¡ããããã« `--fp8_t5` ã䜿çšããŠãã ããã
</details>
## Training / åŠç¿
### Training
Start training using the following command (input as a single line):
```bash
accelerate launch --num_cpu_threads_per_process 1 --mixed_precision bf16 wan_train_network.py
--task t2v-1.3B
--dit path/to/wan2.1_xxx_bf16.safetensors
--dataset_config path/to/toml --sdpa --mixed_precision bf16 --fp8_base
--optimizer_type adamw8bit --learning_rate 2e-4 --gradient_checkpointing
--max_data_loader_n_workers 2 --persistent_data_loader_workers
--network_module networks.lora_wan --network_dim 32
--timestep_sampling shift --discrete_flow_shift 3.0
--max_train_epochs 16 --save_every_n_epochs 1 --seed 42
--output_dir path/to/output_dir --output_name name-of-lora
```
The above is an example. The appropriate values for `timestep_sampling` and `discrete_flow_shift` need to be determined by experimentation.
For additional options, use `python wan_train_network.py --help` (note that many options are unverified).
`--task` is one of `t2v-1.3B`, `t2v-14B`, `i2v-14B`, `t2i-14B` (for Wan2.1 official models), `t2v-1.3B-FC`, `t2v-14B-FC`, and `i2v-14B-FC` (for Wan2.1 Fun Control model). Specify the DiT weights for the task with `--dit`.
Don't forget to specify `--network_module networks.lora_wan`.
Other options are mostly the same as `hv_train_network.py`.
Use `convert_lora.py` for converting the LoRA weights after training, as in HunyuanVideo.
<details>
<summary>æ¥æ¬èª</summary>
`timestep_sampling`ã`discrete_flow_shift`ã¯äžäŸã§ããã©ã®ãããªå€ãé©åãã¯å®éšãå¿
èŠã§ãã
ãã®ä»ã®ãªãã·ã§ã³ã«ã€ããŠã¯ `python wan_train_network.py --help` ã䜿çšããŠãã ããïŒå€ãã®ãªãã·ã§ã³ã¯æªæ€èšŒã§ãïŒã
`--task` ã«ã¯ `t2v-1.3B`, `t2v-14B`, `i2v-14B`, `t2i-14B` ïŒãããã¯Wan2.1å
¬åŒã¢ãã«ïŒã`t2v-1.3B-FC`, `t2v-14B-FC`, `i2v-14B-FC`ïŒWan2.1-Fun Controlã¢ãã«ïŒãæå®ããŸãã`--dit`ã«ãtaskã«å¿ããDiTã®éã¿ãæå®ããŠãã ããã
`--network_module` ã« `networks.lora_wan` ãæå®ããããšãå¿ããªãã§ãã ããã
ãã®ä»ã®ãªãã·ã§ã³ã¯ãã»ãŒ`hv_train_network.py`ãšåæ§ã§ãã
åŠç¿åŸã®LoRAã®éã¿ã®å€æã¯ãHunyuanVideoãšåæ§ã«`convert_lora.py`ã䜿çšããŠãã ããã
</details>
### Command line options for training with sampling / ãµã³ãã«ç»åçæã«é¢é£ããåŠç¿æã®ã³ãã³ãã©ã€ã³ãªãã·ã§ã³
Example of command line options for training with sampling / èšè¿°äŸ:
```bash
--vae path/to/wan_2.1_vae.safetensors
--t5 path/to/models_t5_umt5-xxl-enc-bf16.pth
--sample_prompts /path/to/prompt_file.txt
--sample_every_n_epochs 1 --sample_every_n_steps 1000 -- sample_at_first
```
Each option is the same as when generating images or as HunyuanVideo. Please refer to [here](/docs/sampling_during_training.md) for details.
If you train I2V models, add `--clip path/to/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth` to specify the CLIP model.
You can specify the initial image, the negative prompt and the control video (for Wan2.1-Fun-Control) in the prompt file. Please refer to [here](/docs/sampling_during_training.md#prompt-file--ããã³ãããã¡ã€ã«).
<details>
<summary>æ¥æ¬èª</summary>
åãªãã·ã§ã³ã¯æšè«æãããã³HunyuanVideoã®å Žåãšåæ§ã§ãã[ãã¡ã](/docs/sampling_during_training.md)ãåç
§ããŠãã ããã
I2Vã¢ãã«ãåŠç¿ããå Žåã¯ã`--clip path/to/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth` ã远å ããŠCLIPã¢ãã«ãæå®ããŠãã ããã
ããã³ãããã¡ã€ã«ã§ãåæç»åããã¬ãã£ãããã³ãããå¶åŸ¡åç»ïŒWan2.1-Fun-ControlçšïŒçãæå®ã§ããŸãã[ãã¡ã](/docs/sampling_during_training.md#prompt-file--ããã³ãããã¡ã€ã«)ãåç
§ããŠãã ããã
</details>
## Inference / æšè«
### Inference Options Comparison / æšè«ãªãã·ã§ã³æ¯èŒ
#### Speed Comparison (Faster â Slower) / é床æ¯èŒïŒéãâé
ãïŒ
*Note: Results may vary depending on GPU type*
fp8_fast > bf16/fp16 (no block swap) > fp8 > fp8_scaled > bf16/fp16 (block swap)
#### Quality Comparison (Higher â Lower) / å質æ¯èŒïŒé«âäœïŒ
bf16/fp16 > fp8_scaled > fp8 >> fp8_fast
### T2V Inference / T2Væšè«
The following is an example of T2V inference (input as a single line):
```bash
python wan_generate_video.py --fp8 --task t2v-1.3B --video_size 832 480 --video_length 81 --infer_steps 20
--prompt "prompt for the video" --save_path path/to/save.mp4 --output_type both
--dit path/to/wan2.1_t2v_1.3B_bf16_etc.safetensors --vae path/to/wan_2.1_vae.safetensors
--t5 path/to/models_t5_umt5-xxl-enc-bf16.pth
--attn_mode torch
```
`--task` is one of `t2v-1.3B`, `t2v-14B`, `i2v-14B`, `t2i-14B` (these are Wan2.1 official models), `t2v-1.3B-FC`, `t2v-14B-FC` and `i2v-14B-FC` (for Wan2.1-Fun Control model).
`--attn_mode` is `torch`, `sdpa` (same as `torch`), `xformers`, `sageattn`,`flash2`, `flash` (same as `flash2`) or `flash3`. `torch` is the default. Other options require the corresponding library to be installed. `flash3` (Flash attention 3) is not tested.
Specifying `--fp8` runs DiT in fp8 mode. fp8 can significantly reduce memory consumption but may impact output quality.
`--fp8_scaled` can be specified in addition to `--fp8` to run the model in fp8 weights optimization. This increases memory consumption and speed slightly but improves output quality. See [here](advanced_config.md#fp8-weight-optimization-for-models--ã¢ãã«ã®éã¿ã®fp8ãžã®æé©å) for details.
`--fp8_fast` option is also available for faster inference on RTX 40x0 GPUs. This option requires `--fp8_scaled` option. **This option seems to degrade the output quality.**
`--fp8_t5` can be used to specify the T5 model in fp8 format. This option reduces memory usage for the T5 model.
`--negative_prompt` can be used to specify a negative prompt. If omitted, the default negative prompt is used.
`--flow_shift` can be used to specify the flow shift (default 3.0 for I2V with 480p, 5.0 for others).
`--guidance_scale` can be used to specify the guidance scale for classifier free guidance (default 5.0).
`--blocks_to_swap` is the number of blocks to swap during inference. The default value is None (no block swap). The maximum value is 39 for 14B model and 29 for 1.3B model.
`--vae_cache_cpu` enables VAE cache in main memory. This reduces VRAM usage slightly but processing is slower.
`--compile` enables torch.compile. See [here](/README.md#inference) for details.
`--trim_tail_frames` can be used to trim the tail frames when saving. The default is 0.
`--cfg_skip_mode` specifies the mode for skipping CFG in different steps. The default is `none` (all steps).`--cfg_apply_ratio` specifies the ratio of steps where CFG is applied. See below for details.
`--include_patterns` and `--exclude_patterns` can be used to specify which LoRA modules to apply or exclude during training. If not specified, all modules are applied by default. These options accept regular expressions.
`--include_patterns` specifies the modules to be applied, and `--exclude_patterns` specifies the modules to be excluded. The regular expression is matched against the LoRA key name, and include takes precedence.
The key name to be searched is in sd-scripts format (`lora_unet_<module_name with dot replaced by _>`). For example, `lora_unet_blocks_9_cross_attn_k`.
For example, if you specify `--exclude_patterns "blocks_[23]\d_"`, it will exclude modules containing `blocks_20` to `blocks_39`. If you specify `--include_patterns "cross_attn" --exclude_patterns "blocks_(0|1|2|3|4)_"`, it will apply LoRA to modules containing `cross_attn` and not containing `blocks_0` to `blocks_4`.
If you specify multiple LoRA weights, please specify them with multiple arguments. For example: `--include_patterns "cross_attn" ".*" --exclude_patterns "dummy_do_not_exclude" "blocks_(0|1|2|3|4)"`. `".*"` is a regex that matches everything. `dummy_do_not_exclude` is a dummy regex that does not match anything.
`--cpu_noise` generates initial noise on the CPU. This may result in the same results as ComfyUI with the same seed (depending on other settings).
If you are using the Fun Control model, specify the control video with `--control_path`. You can specify a video file or a folder containing multiple image files. The number of frames in the video file (or the number of images) should be at least the number specified in `--video_length` (plus 1 frame if you specify `--end_image_path`).
Please try to match the aspect ratio of the control video with the aspect ratio specified in `--video_size` (there may be some deviation from the initial image of I2V due to the use of bucketing processing).
Other options are same as `hv_generate_video.py` (some options are not supported, please check the help).
<details>
<summary>æ¥æ¬èª</summary>
`--task` ã«ã¯ `t2v-1.3B`, `t2v-14B`, `i2v-14B`, `t2i-14B` ïŒãããã¯Wan2.1å
¬åŒã¢ãã«ïŒã`t2v-1.3B-FC`, `t2v-14B-FC`, `i2v-14B-FC`ïŒWan2.1-Fun Controlã¢ãã«ïŒãæå®ããŸãã
`--attn_mode` ã«ã¯ `torch`, `sdpa`ïŒ`torch`ãšåãïŒã`xformers`, `sageattn`, `flash2`, `flash`ïŒ`flash2`ãšåãïŒ, `flash3` ã®ãããããæå®ããŸããããã©ã«ã㯠`torch` ã§ãããã®ä»ã®ãªãã·ã§ã³ã䜿çšããå Žåã¯ã察å¿ããã©ã€ãã©ãªãã€ã³ã¹ããŒã«ããå¿
èŠããããŸãã`flash3`ïŒFlash attention 3ïŒã¯æªãã¹ãã§ãã
`--fp8` ãæå®ãããšDiTã¢ãã«ãfp8圢åŒã§å®è¡ããŸããfp8ã¯ã¡ã¢ãªæ¶è²»ã倧å¹
ã«åæžã§ããŸãããåºåå質ã«åœ±é¿ãäžããå¯èœæ§ããããŸãã
`--fp8_scaled` ã `--fp8` ãšäœµçšãããšãfp8ãžã®éã¿éååãè¡ããŸããã¡ã¢ãªæ¶è²»ãšé床ã¯ãããã«æªåããŸãããåºåå質ãåäžããŸãã詳ããã¯[ãã¡ã](advanced_config.md#fp8-weight-optimization-for-models--ã¢ãã«ã®éã¿ã®fp8ãžã®æé©å)ãåç
§ããŠãã ããã
`--fp8_fast` ãªãã·ã§ã³ã¯RTX 40x0 GPUã§ã®é«éæšè«ã«äœ¿çšããããªãã·ã§ã³ã§ãããã®ãªãã·ã§ã³ã¯ `--fp8_scaled` ãªãã·ã§ã³ãå¿
èŠã§ãã**åºåå質ãå£åããããã§ãã**
`--fp8_t5` ãæå®ãããšT5ã¢ãã«ãfp8圢åŒã§å®è¡ããŸããT5ã¢ãã«åŒã³åºãæã®ã¡ã¢ãªäœ¿çšéãåæžããŸãã
`--negative_prompt` ã§ãã¬ãã£ãããã³ãããæå®ã§ããŸããçç¥ããå Žåã¯ããã©ã«ãã®ãã¬ãã£ãããã³ããã䜿çšãããŸãã
`--flow_shift` ã§flow shiftãæå®ã§ããŸãïŒ480pã®I2Vã®å Žåã¯ããã©ã«ã3.0ããã以å€ã¯5.0ïŒã
`--guidance_scale` ã§classifier free guianceã®ã¬ã€ãã³ã¹ã¹ã±ãŒã«ãæå®ã§ããŸãïŒããã©ã«ã5.0ïŒã
`--blocks_to_swap` ã¯æšè«æã®block swapã®æ°ã§ããããã©ã«ãå€ã¯NoneïŒblock swapãªãïŒã§ããæå€§å€ã¯14Bã¢ãã«ã®å Žå39ã1.3Bã¢ãã«ã®å Žå29ã§ãã
`--vae_cache_cpu` ãæå¹ã«ãããšãVAEã®ãã£ãã·ã¥ãã¡ã€ã³ã¡ã¢ãªã«ä¿æããŸããVRAM䜿çšéãå€å°æžããŸãããåŠçã¯é
ããªããŸãã
`--compile`ã§torch.compileãæå¹ã«ããŸãã詳现ã«ã€ããŠã¯[ãã¡ã](/README.md#inference)ãåç
§ããŠãã ããã
`--trim_tail_frames` ã§ä¿åæã«æ«å°Ÿã®ãã¬ãŒã ãããªãã³ã°ã§ããŸããããã©ã«ãã¯0ã§ãã
`--cfg_skip_mode` ã¯ç°ãªãã¹ãããã§CFGãã¹ãããããã¢ãŒããæå®ããŸããããã©ã«ã㯠`none`ïŒå
šã¹ãããïŒã`--cfg_apply_ratio` ã¯CFGãé©çšãããã¹ãããã®å²åãæå®ããŸãã詳现ã¯åŸè¿°ããŸãã
LoRAã®ã©ã®ã¢ãžã¥ãŒã«ãé©çšããããã`--include_patterns`ãš`--exclude_patterns`ã§æå®ã§ããŸãïŒæªæå®æã»ããã©ã«ãã¯å
šã¢ãžã¥ãŒã«é©çšãããŸã
ïŒããããã®ãªãã·ã§ã³ã«ã¯ãæ£èŠè¡šçŸãæå®ããŸãã`--include_patterns`ã¯é©çšããã¢ãžã¥ãŒã«ã`--exclude_patterns`ã¯é©çšããªãã¢ãžã¥ãŒã«ãæå®ããŸããæ£èŠè¡šçŸãLoRAã®ããŒåã«å«ãŸãããã©ããã§å€æãããincludeãåªå
ãããŸãã
æ€çŽ¢å¯Ÿè±¡ãšãªãããŒå㯠sd-scripts 圢åŒïŒ`lora_unet_<ã¢ãžã¥ãŒã«åã®ãããã_ã«çœ®æãããã®>`ïŒã§ããäŸïŒ`lora_unet_blocks_9_cross_attn_k`
ããšãã° `--exclude_patterns "blocks_[23]\d_"`ã®ã¿ãæå®ãããšã`blocks_20`ãã`blocks_39`ãå«ãã¢ãžã¥ãŒã«ãé€å€ãããŸãã`--include_patterns "cross_attn" --exclude_patterns "blocks_(0|1|2|3|4)_"`ã®ããã«includeãšexcludeãæå®ãããšã`cross_attn`ãå«ãã¢ãžã¥ãŒã«ã§ããã€`blocks_0`ãã`blocks_4`ãå«ãŸãªãã¢ãžã¥ãŒã«ã«LoRAãé©çšãããŸãã
è€æ°ã®LoRAã®éã¿ãæå®ããå Žåã¯ãè€æ°åã®åŒæ°ã§æå®ããŠãã ãããäŸïŒ`--include_patterns "cross_attn" ".*" --exclude_patterns "dummy_do_not_exclude" "blocks_(0|1|2|3|4)"` `".*"`ã¯å
šãŠã«ãããããæ£èŠè¡šçŸã§ãã`dummy_do_not_exclude`ã¯äœã«ããããããªããããŒã®æ£èŠè¡šçŸã§ãã
`--cpu_noise`ãæå®ãããšåæãã€ãºãCPUã§çæããŸããããã«ããåäžseedæã®çµæãComfyUIãšåãã«ãªãå¯èœæ§ããããŸãïŒä»ã®èšå®ã«ããããŸãïŒã
Fun Controlã¢ãã«ã䜿çšããå Žåã¯ã`--control_path`ã§å¶åŸ¡çšã®æ åãæå®ããŸããåç»ãã¡ã€ã«ããŸãã¯è€æ°æã®ç»åãã¡ã€ã«ãå«ãã ãã©ã«ããæå®ã§ããŸããåç»ãã¡ã€ã«ã®ãã¬ãŒã æ°ïŒãŸãã¯ç»åã®ææ°ïŒã¯ã`--video_length`ã§æå®ãããã¬ãŒã æ°ä»¥äžã«ããŠãã ããïŒåŸè¿°ã®`--end_image_path`ãæå®ããå Žåã¯ãããã«+1ãã¬ãŒã ïŒã
å¶åŸ¡çšã®æ åã®ã¢ã¹ãã¯ãæ¯ã¯ã`--video_size`ã§æå®ããã¢ã¹ãã¯ãæ¯ãšã§ãããããåãããŠãã ããïŒbucketingã®åŠçãæµçšããŠããããI2Vã®åæç»åãšãºã¬ãå ŽåããããŸãïŒã
ãã®ä»ã®ãªãã·ã§ã³ã¯ `hv_generate_video.py` ãšåãã§ãïŒäžéšã®ãªãã·ã§ã³ã¯ãµããŒããããŠããªãããããã«ãã確èªããŠãã ããïŒã
</details>
#### CFG Skip Mode / CFGã¹ãããã¢ãŒã
These options allow you to balance generation speed against prompt accuracy. More skipped steps results in faster generation with potential quality degradation.
Setting `--cfg_apply_ratio` to 0.5 speeds up the denoising loop by up to 25%.
`--cfg_skip_mode` specified one of the following modes:
- `early`: Skips CFG in early steps for faster generation, applying guidance mainly in later refinement steps
- `late`: Skips CFG in later steps, applying guidance during initial structure formation
- `middle`: Skips CFG in middle steps, applying guidance in both early and later steps
- `early_late`: Skips CFG in both early and late steps, applying only in middle steps
- `alternate`: Applies CFG in alternate steps based on the specified ratio
- `none`: Applies CFG at all steps (default)
`--cfg_apply_ratio` specifies a value from 0.0 to 1.0 controlling the proportion of steps where CFG is applied. For example, setting 0.5 means CFG will be applied in only 50% of the steps.
If num_steps is 10, the following table shows the steps where CFG is applied based on the `--cfg_skip_mode` option (A means CFG is applied, S means it is skipped, `--cfg_apply_ratio` is 0.6):
| skip mode | CFG apply pattern |
|---|---|
| early | SSSSAAAAAA |
| late | AAAAAASSSS |
| middle | AAASSSSAAA |
| early_late | SSAAAAAASS |
| alternate | SASASAASAS |
The appropriate settings are unknown, but you may want to try `late` or `early_late` mode with a ratio of around 0.3 to 0.5.
<details>
<summary>æ¥æ¬èª</summary>
ãããã®ãªãã·ã§ã³ã¯ãçæé床ãšããã³ããã®ç²ŸåºŠã®ãã©ã³ã¹ãåãããšãã§ããŸããã¹ããããããã¹ããããå€ãã»ã©ãçæé床ãéããªããŸãããå質ãäœäžããå¯èœæ§ããããŸãã
ratioã«0.5ãæå®ããããšã§ãããã€ãžã³ã°ã®ã«ãŒããæå€§25%çšåºŠãé«éåãããŸãã
`--cfg_skip_mode` ã¯æ¬¡ã®ã¢ãŒãã®ãããããæå®ããŸãïŒ
- `early`ïŒåæã®ã¹ãããã§CFGãã¹ãããããŠãäž»ã«çµç€ã®ç²Ÿçްåã®ã¹ãããã§é©çšããŸã
- `late`ïŒçµç€ã®ã¹ãããã§CFGãã¹ãããããåæã®æ§é ãæ±ºãŸã段éã§é©çšããŸã
- `middle`ïŒäžéã®ã¹ãããã§CFGãã¹ãããããåæãšçµç€ã®ã¹ãããã®äž¡æ¹ã§é©çšããŸã
- `early_late`ïŒåæãšçµç€ã®ã¹ãããã®äž¡æ¹ã§CFGãã¹ãããããäžéã®ã¹ãããã®ã¿é©çšããŸã
- `alternate`ïŒæå®ãããå²åã«åºã¥ããŠCFGãé©çšããŸã
`--cfg_apply_ratio` ã¯ãCFGãé©çšãããã¹ãããã®å²åã0.0ãã1.0ã®å€ã§æå®ããŸããããšãã°ã0.5ã«èšå®ãããšãCFGã¯ã¹ãããã®50%ã®ã¿ã§é©çšãããŸãã
å
·äœçãªãã¿ãŒã³ã¯äžã®ããŒãã«ãåç
§ããŠãã ããã
é©åãªèšå®ã¯äžæã§ãããã¢ãŒãã¯`late`ãŸãã¯`early_late`ãratioã¯0.3~0.5çšåºŠãã詊ããŠã¿ããšè¯ããããããŸããã
</details>
#### Skip Layer Guidance
Skip Layer Guidance is a feature that uses the output of a model with some blocks skipped as the unconditional output of classifier free guidance. It was originally proposed in [SD 3.5](https://github.com/comfyanonymous/ComfyUI/pull/5404) and first applied in Wan2GP in [this PR](https://github.com/deepbeepmeep/Wan2GP/pull/61). It may improve the quality of generated videos.
The implementation of SD 3.5 is [here](https://github.com/Stability-AI/sd3.5/blob/main/sd3_impls.py), and the implementation of Wan2GP (the PR mentioned above) has some different specifications. This inference script allows you to choose between the two methods.
*The SD3.5 method applies slg output in addition to cond and uncond (slows down the speed). The Wan2GP method uses only cond and slg output.*
The following arguments are available:
- `--slg_mode`: Specifies the SLG mode. `original` for SD 3.5 method, `uncond` for Wan2GP method. Default is None (no SLG).
- `--slg_layers`: Specifies the indices of the blocks (layers) to skip in SLG, separated by commas. Example: `--slg_layers 4,5,6`. Default is empty (no skip). If this option is not specified, `--slg_mode` is ignored.
- `--slg_scale`: Specifies the scale of SLG when `original`. Default is 3.0.
- `--slg_start`: Specifies the start step of SLG application in inference steps from 0.0 to 1.0. Default is 0.0 (applied from the beginning).
- `--slg_end`: Specifies the end step of SLG application in inference steps from 0.0 to 1.0. Default is 0.3 (applied up to 30% from the beginning).
Appropriate settings are unknown, but you may want to try `original` mode with a scale of around 3.0 and a start ratio of 0.0 and an end ratio of 0.5, with layers 4, 5, and 6 skipped.
<details>
<summary>æ¥æ¬èª</summary>
Skip Layer Guidanceã¯ãäžéšã®blockãã¹ãããããã¢ãã«åºåãclassifier free guidanceã®unconditionalåºåã«äœ¿çšããæ©èœã§ããå
ã
ã¯[SD 3.5](https://github.com/comfyanonymous/ComfyUI/pull/5404)ã§ææ¡ããããã®ã§ãWan2.1ã«ã¯[Wan2GPã®ãã¡ãã®PR](https://github.com/deepbeepmeep/Wan2GP/pull/61)ã§åããŠé©çšãããŸãããçæåç»ã®å質ãåäžããå¯èœæ§ããããŸãã
SD 3.5ã®å®è£
ã¯[ãã¡ã](https://github.com/Stability-AI/sd3.5/blob/main/sd3_impls.py)ã§ãWan2GPã®å®è£
ïŒåè¿°ã®PRïŒã¯äžéšä»æ§ãç°ãªããŸãããã®æšè«ã¹ã¯ãªããã§ã¯äž¡è
ã®æ¹åŒãéžæã§ããããã«ãªã£ãŠããŸãã
â»SD3.5æ¹åŒã¯condãšuncondã«å ããŠslg outputãé©çšããŸãïŒé床ãäœäžããŸãïŒãWan2GPæ¹åŒã¯condãšslg outputã®ã¿ã䜿çšããŸãã
以äžã®åŒæ°ããããŸãã
- `--slg_mode`ïŒSLGã®ã¢ãŒããæå®ããŸãã`original`ã§SD 3.5ã®æ¹åŒã`uncond`ã§Wan2GPã®æ¹åŒã§ããããã©ã«ãã¯Noneã§ãSLGã䜿çšããŸããã
- `--slg_layers`ïŒSLGã§ã¹ãããããblock (layer)ã®ã€ã³ãã¯ã¹ãã«ã³ãåºåãã§æå®ããŸããäŸïŒ`--slg_layers 4,5,6`ãããã©ã«ãã¯ç©ºïŒã¹ãããããªãïŒã§ãããã®ãªãã·ã§ã³ãæå®ããªããš`--slg_mode`ã¯ç¡èŠãããŸãã
- `--slg_scale`ïŒ`original`ã®ãšãã®SLGã®ã¹ã±ãŒã«ãæå®ããŸããããã©ã«ãã¯3.0ã§ãã
- `--slg_start`ïŒæšè«ã¹ãããã®SLGé©çšéå§ã¹ãããã0.0ãã1.0ã®å²åã§æå®ããŸããããã©ã«ãã¯0.0ã§ãïŒæåããé©çšïŒã
- `--slg_end`ïŒæšè«ã¹ãããã®SLGé©çšçµäºã¹ãããã0.0ãã1.0ã®å²åã§æå®ããŸããããã©ã«ãã¯0.3ã§ãïŒæåãã30%ãŸã§é©çšïŒã
é©åãªèšå®ã¯äžæã§ããã`original`ã¢ãŒãã§ã¹ã±ãŒã«ã3.0çšåºŠãéå§å²åã0.0ãçµäºå²åã0.5çšåºŠã«èšå®ãã4, 5, 6ã®layerãã¹ãããããèšå®ããå§ãããšè¯ããããããŸããã
</details>
### I2V Inference / I2Væšè«
The following is an example of I2V inference (input as a single line):
```bash
python wan_generate_video.py --fp8 --task i2v-14B --video_size 832 480 --video_length 81 --infer_steps 20
--prompt "prompt for the video" --save_path path/to/save.mp4 --output_type both
--dit path/to/wan2.1_i2v_480p_14B_bf16_etc.safetensors --vae path/to/wan_2.1_vae.safetensors
--t5 path/to/models_t5_umt5-xxl-enc-bf16.pth --clip path/to/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth
--attn_mode torch --image_path path/to/image.jpg
```
Add `--clip` to specify the CLIP model. `--image_path` is the path to the image to be used as the initial frame.
`--end_image_path` can be used to specify the end image. This option is experimental. When this option is specified, the saved video will be slightly longer than the specified number of frames and will have noise, so it is recommended to specify `--trim_tail_frames 3` to trim the tail frames.
You can also use the Fun Control model for I2V inference. Specify the control video with `--control_path`.
Other options are same as T2V inference.
<details>
<summary>æ¥æ¬èª</summary>
`--clip` ã远å ããŠCLIPã¢ãã«ãæå®ããŸãã`--image_path` ã¯åæãã¬ãŒã ãšããŠäœ¿çšããç»åã®ãã¹ã§ãã
`--end_image_path` ã§çµäºç»åãæå®ã§ããŸãããã®ãªãã·ã§ã³ã¯å®éšçãªãã®ã§ãããã®ãªãã·ã§ã³ãæå®ãããšãä¿åãããåç»ãæå®ãã¬ãŒã æ°ãããããå€ããªãããã€ãã€ãºãä¹ãããã`--trim_tail_frames 3` ãªã©ãæå®ããŠæ«å°Ÿã®ãã¬ãŒã ãããªãã³ã°ããããšããå§ãããŸãã
I2Væšè«ã§ãFun Controlã¢ãã«ã䜿çšã§ããŸãã`--control_path` ã§å¶åŸ¡çšã®æ åãæå®ããŸãã
ãã®ä»ã®ãªãã·ã§ã³ã¯T2Væšè«ãšåãã§ãã
</details>
### New Batch and Interactive Modes / æ°ãããããã¢ãŒããšã€ã³ã¿ã©ã¯ãã£ãã¢ãŒã
In addition to single video generation, Wan 2.1 now supports batch generation from file and interactive prompt input:
#### Batch Mode from File / ãã¡ã€ã«ããã®ãããã¢ãŒã
Generate multiple videos from prompts stored in a text file:
```bash
python wan_generate_video.py --from_file prompts.txt --task t2v-14B
--dit path/to/model.safetensors --vae path/to/vae.safetensors
--t5 path/to/t5_model.pth --save_path output_directory
```
The prompts file format:
- One prompt per line
- Empty lines and lines starting with # are ignored (comments)
- Each line can include prompt-specific parameters using command-line style format:
```
A beautiful sunset over mountains --w 832 --h 480 --f 81 --d 42 --s 20
A busy city street at night --w 480 --h 832 --g 7.5 --n low quality, blurry
```
Supported inline parameters (if ommitted, default values from the command line are used):
- `--w`: Width
- `--h`: Height
- `--f`: Frame count
- `--d`: Seed
- `--s`: Inference steps
- `--g` or `--l`: Guidance scale
- `--fs`: Flow shift
- `--i`: Image path (for I2V)
- `--cn`: Control path (for Fun Control)
- `--n`: Negative prompt
In batch mode, models are loaded once and reused for all prompts, significantly improving overall generation time compared to multiple single runs.
#### Interactive Mode / ã€ã³ã¿ã©ã¯ãã£ãã¢ãŒã
Interactive command-line interface for entering prompts:
```bash
python wan_generate_video.py --interactive --task t2v-14B
--dit path/to/model.safetensors --vae path/to/vae.safetensors
--t5 path/to/t5_model.pth --save_path output_directory
```
In interactive mode:
- Enter prompts directly at the command line
- Use the same inline parameter format as batch mode
- Use Ctrl+D (or Ctrl+Z on Windows) to exit
- Models remain loaded between generations for efficiency
<details>
<summary>æ¥æ¬èª</summary>
åäžåç»ã®çæã«å ããŠãWan 2.1ã¯çŸåšããã¡ã€ã«ããã®ãããçæãšã€ã³ã¿ã©ã¯ãã£ããªããã³ããå
¥åããµããŒãããŠããŸãã
#### ãã¡ã€ã«ããã®ãããã¢ãŒã
ããã¹ããã¡ã€ã«ã«ä¿åãããããã³ããããè€æ°ã®åç»ãçæããŸãïŒ
```bash
python wan_generate_video.py --from_file prompts.txt --task t2v-14B
--dit path/to/model.safetensors --vae path/to/vae.safetensors
--t5 path/to/t5_model.pth --save_path output_directory
```
ããã³ãããã¡ã€ã«ã®åœ¢åŒïŒ
- 1è¡ã«1ã€ã®ããã³ãã
- 空è¡ã#ã§å§ãŸãè¡ã¯ç¡èŠãããŸãïŒã³ã¡ã³ãïŒ
- åè¡ã«ã¯ã³ãã³ãã©ã€ã³åœ¢åŒã§ããã³ããåºæã®ãã©ã¡ãŒã¿ãå«ããããšãã§ããŸãïŒ
ãµããŒããããŠããã€ã³ã©ã€ã³ãã©ã¡ãŒã¿ïŒçç¥ããå Žåãã³ãã³ãã©ã€ã³ã®ããã©ã«ãå€ã䜿çšãããŸãïŒ
- `--w`: å¹
- `--h`: é«ã
- `--f`: ãã¬ãŒã æ°
- `--d`: ã·ãŒã
- `--s`: æšè«ã¹ããã
- `--g` ãŸã㯠`--l`: ã¬ã€ãã³ã¹ã¹ã±ãŒã«
- `--fs`: ãããŒã·ãã
- `--i`: ç»åãã¹ïŒI2VçšïŒ
- `--cn`: ã³ã³ãããŒã«ãã¹ïŒFun ControlçšïŒ
- `--n`: ãã¬ãã£ãããã³ãã
ãããã¢ãŒãã§ã¯ãã¢ãã«ã¯äžåºŠã ãããŒãããããã¹ãŠã®ããã³ããã§åå©çšããããããè€æ°åã®åäžå®è¡ãšæ¯èŒããŠå
šäœçãªçææéã倧å¹
ã«æ¹åãããŸãã
#### ã€ã³ã¿ã©ã¯ãã£ãã¢ãŒã
ããã³ãããå
¥åããããã®ã€ã³ã¿ã©ã¯ãã£ããªã³ãã³ãã©ã€ã³ã€ã³ã¿ãŒãã§ãŒã¹ïŒ
```bash
python wan_generate_video.py --interactive --task t2v-14B
--dit path/to/model.safetensors --vae path/to/vae.safetensors
--t5 path/to/t5_model.pth --save_path output_directory
```
ã€ã³ã¿ã©ã¯ãã£ãã¢ãŒãã§ã¯ïŒ
- ã³ãã³ãã©ã€ã³ã§çŽæ¥ããã³ãããå
¥å
- ãããã¢ãŒããšåãã€ã³ã©ã€ã³ãã©ã¡ãŒã¿åœ¢åŒã䜿çš
- çµäºããã«ã¯ Ctrl+D (Windowsã§ã¯ Ctrl+Z) ã䜿çš
- å¹çã®ãããã¢ãã«ã¯çæéã§èªã¿èŸŒãŸãããŸãŸã«ãªããŸã
</details>
|