File size: 19,662 Bytes
ef46f0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import argparse
import logging
import math
import os
from typing import List
import numpy as np
import torch
import torch.nn.functional as F
from tqdm import tqdm
from transformers import SiglipImageProcessor, SiglipVisionModel
from dataset import config_utils
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
from dataset.image_video_dataset import BaseDataset, ItemInfo, save_latent_cache_framepack, ARCHITECTURE_FRAMEPACK
from frame_pack import hunyuan
from frame_pack.framepack_utils import load_image_encoders, load_vae
from hunyuan_model.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
from frame_pack.clip_vision import hf_clip_vision_encode
import cache_latents
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def encode_and_save_batch(
vae: AutoencoderKLCausal3D,
feature_extractor: SiglipImageProcessor,
image_encoder: SiglipVisionModel,
batch: List[ItemInfo],
latent_window_size: int,
vanilla_sampling: bool = False,
):
"""Encode a batch of original RGB videos and save FramePack section caches."""
# Stack batch into tensor (B,C,F,H,W) in RGB order
contents = torch.stack([torch.from_numpy(item.content) for item in batch])
if len(contents.shape) == 4:
contents = contents.unsqueeze(1) # B, H, W, C -> B, F, H, W, C
contents = contents.permute(0, 4, 1, 2, 3).contiguous() # B, C, F, H, W
contents = contents.to(vae.device, dtype=vae.dtype)
contents = contents / 127.5 - 1.0 # normalize to [-1, 1]
height, width = contents.shape[3], contents.shape[4]
if height < 8 or width < 8:
item = batch[0] # other items should have the same size
raise ValueError(f"Image or video size too small: {item.item_key} and {len(batch) - 1} more, size: {item.original_size}")
# calculate latent frame count from original frame count (4n+1)
latent_f = (batch[0].frame_count - 1) // 4 + 1
# calculate the total number of sections (excluding the first frame, divided by window size)
total_latent_sections = math.floor((latent_f - 1) / latent_window_size)
if total_latent_sections < 1:
min_frames_needed = latent_window_size * 4 + 1
raise ValueError(
f"Not enough frames for FramePack: {batch[0].frame_count} frames ({latent_f} latent frames), minimum required: {min_frames_needed} frames ({latent_window_size+1} latent frames)"
)
# 実際に処理する潜在変数のフレーム数 (セクション境界に合わせる)
latent_f_aligned = total_latent_sections * latent_window_size + 1
# 実際に処理する元のフレーム数
frame_count_aligned = (latent_f_aligned - 1) * 4 + 1
if frame_count_aligned != batch[0].frame_count:
logger.info(
f"Frame count mismatch: required={frame_count_aligned} != actual={batch[0].frame_count}, trimming to {frame_count_aligned}"
)
contents = contents[:, :, :frame_count_aligned, :, :]
latent_f = latent_f_aligned # Update to the aligned value
# VAE encode (list of tensor -> stack)
latents = hunyuan.vae_encode(contents, vae) # include scaling factor
latents = latents.to("cpu") # (B, C, latent_f, H/8, W/8)
# Vision encoding per‑item (once)
images = np.stack([item.content[0] for item in batch], axis=0) # B, H, W, C
# encode image with image encoder
image_embeddings = []
with torch.no_grad():
for image in images:
image_encoder_output = hf_clip_vision_encode(image, feature_extractor, image_encoder)
image_embeddings.append(image_encoder_output.last_hidden_state)
image_embeddings = torch.cat(image_embeddings, dim=0) # B, LEN, 1152
image_embeddings = image_embeddings.to("cpu") # Save memory
if not vanilla_sampling:
# padding is reversed for inference (future to past)
latent_paddings = list(reversed(range(total_latent_sections)))
# Note: The padding trick for inference. See the paper for details.
if total_latent_sections > 4:
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
for b, item in enumerate(batch):
original_latent_cache_path = item.latent_cache_path
video_lat = latents[b : b + 1] # keep batch dim, 1, C, F, H, W
# emulate inference step (history latents)
# Note: In inference, history_latents stores *generated* future latents.
# Here, for caching, we just need its shape and type for clean_* tensors.
# The actual content doesn't matter much as clean_* will be overwritten.
history_latents = torch.zeros(
(1, video_lat.shape[1], 1 + 2 + 16, video_lat.shape[3], video_lat.shape[4]), dtype=video_lat.dtype
) # C=16 for HY
latent_f_index = latent_f - latent_window_size # Start from the last section
section_index = total_latent_sections - 1
for latent_padding in latent_paddings:
is_last_section = section_index == 0 # the last section in inference order == the first section in time
latent_padding_size = latent_padding * latent_window_size
if is_last_section:
assert latent_f_index == 1, "Last section should be starting from frame 1"
# indices generation (same as inference)
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
(
clean_latent_indices_pre, # Index for start_latent
blank_indices, # Indices for padding (future context in inference)
latent_indices, # Indices for the target latents to predict
clean_latent_indices_post, # Index for the most recent history frame
clean_latent_2x_indices, # Indices for the next 2 history frames
clean_latent_4x_indices, # Indices for the next 16 history frames
) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
# Indices for clean_latents (start + recent history)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
# clean latents preparation (emulating inference)
clean_latents_pre = video_lat[:, :, 0:1, :, :] # Always the first frame (start_latent)
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, : 1 + 2 + 16, :, :].split(
[1, 2, 16], dim=2
)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2) # Combine start frame + placeholder
# Target latents for this section (ground truth)
target_latents = video_lat[:, :, latent_f_index : latent_f_index + latent_window_size, :, :]
# save cache (file path is inside item.latent_cache_path pattern), remove batch dim
item.latent_cache_path = append_section_idx_to_latent_cache_path(original_latent_cache_path, section_index)
save_latent_cache_framepack(
item_info=item,
latent=target_latents.squeeze(0), # Ground truth for this section
latent_indices=latent_indices.squeeze(0), # Indices for the ground truth section
clean_latents=clean_latents.squeeze(0), # Start frame + history placeholder
clean_latent_indices=clean_latent_indices.squeeze(0), # Indices for start frame + history placeholder
clean_latents_2x=clean_latents_2x.squeeze(0), # History placeholder
clean_latent_2x_indices=clean_latent_2x_indices.squeeze(0), # Indices for history placeholder
clean_latents_4x=clean_latents_4x.squeeze(0), # History placeholder
clean_latent_4x_indices=clean_latent_4x_indices.squeeze(0), # Indices for history placeholder
image_embeddings=image_embeddings[b],
)
if is_last_section: # If this was the first section generated in inference (time=0)
# History gets the start frame + the generated first section
generated_latents_for_history = video_lat[:, :, : latent_window_size + 1, :, :]
else:
# History gets the generated current section
generated_latents_for_history = target_latents # Use true latents as stand-in for generated
history_latents = torch.cat([generated_latents_for_history, history_latents], dim=2)
section_index -= 1
latent_f_index -= latent_window_size
else:
# Vanilla Sampling Logic
for b, item in enumerate(batch):
original_latent_cache_path = item.latent_cache_path
video_lat = latents[b : b + 1] # Keep batch dim: 1, C, F_aligned, H, W
img_emb = image_embeddings[b] # LEN, 1152
for section_index in range(total_latent_sections):
target_start_f = section_index * latent_window_size + 1
target_end_f = target_start_f + latent_window_size
target_latents = video_lat[:, :, target_start_f:target_end_f, :, :]
# Clean latents preparation (Vanilla)
# Get clean_latents_pre (Always frame 0)
clean_latents_pre = video_lat[:, :, 0:1, :, :]
# Frame indices for past context (relative to anchor)
idx_post_frame = target_start_f - 1 # Frame index of the last frame of section i-1
idx_2x_frame_1 = idx_post_frame - 1
idx_2x_frame_2 = idx_post_frame - 2
idx_4x_start_frame = idx_post_frame - idx_2x_frame_2 - 16
# Helper function to get frame or zeros if index is out of bounds
def get_frame_or_zeros(frame_idx):
if frame_idx >= 0:
# Ensure frame_idx doesn't exceed the actual length
if frame_idx < video_lat.shape[2]:
return video_lat[:, :, frame_idx : frame_idx + 1, :, :]
else:
# This case should ideally not happen if indexing is correct
logger.warning(
f"Attempted to access frame {frame_idx} beyond latent length {video_lat.shape[2]}. Returning zeros."
)
return torch.zeros_like(clean_latents_pre)
else:
return torch.zeros_like(clean_latents_pre)
# Get clean_latents_post (frame at idx_post_frame)
clean_latents_post = get_frame_or_zeros(idx_post_frame)
# Get clean_latents_2x (frames at idx_2x_frame_1, idx_2x_frame_2)
frame_2x_1 = get_frame_or_zeros(idx_2x_frame_1)
frame_2x_2 = get_frame_or_zeros(idx_2x_frame_2)
clean_latents_2x = torch.cat(
[frame_2x_2, frame_2x_1], dim=2
) # Order might matter (older first?) - assuming order [..., t-2, t-1]
# Get clean_latents_4x (16 frames ending at idx_4x_start_frame)
clean_latents_4x_list = []
for i in range(16):
frame_idx = idx_4x_start_frame + i
clean_latents_4x_list.append(get_frame_or_zeros(frame_idx))
clean_latents_4x = torch.cat(clean_latents_4x_list, dim=2) # Ensure correct temporal order [..., t-18, ..., t-3]
# Combine pre and post for the main clean_latents input
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2) # (1, C, 2, H, W)
# Indices generation (Vanilla with Offset)
vanilla_offset_size = section_index * latent_window_size # Offset based on section index
# print(f"Vanilla offset size: {vanilla_offset_size}")
# Calculate total length including the offset
total_length = sum([1, vanilla_offset_size, latent_window_size, 1, 2, 16])
indices = torch.arange(0, total_length).unsqueeze(0)
# Split indices including the offset part
(
clean_latent_indices_pre, # Index for frame 0
past_offset_indices, # Indices representing the time offset *before* section i
latent_indices, # Indices for the target latents (section i)
clean_latent_indices_post, # Index for frame from end of section i-1
clean_latent_2x_indices, # Indices for frames from end of section i-2, i-3
clean_latent_4x_indices, # Indices for the 16 past frames
) = indices.split([1, vanilla_offset_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
# Save cache
item.latent_cache_path = append_section_idx_to_latent_cache_path(original_latent_cache_path, section_index)
save_latent_cache_framepack(
item_info=item,
latent=target_latents.squeeze(0),
latent_indices=latent_indices.squeeze(0), # Indices for target section i
clean_latents=clean_latents.squeeze(0), # Past clean frames
clean_latent_indices=clean_latent_indices.squeeze(0), # Indices for clean_latents_pre/post
clean_latents_2x=clean_latents_2x.squeeze(0), # Past clean frames (2x)
clean_latent_2x_indices=clean_latent_2x_indices.squeeze(0), # Indices for clean_latents_2x
clean_latents_4x=clean_latents_4x.squeeze(0), # Past clean frames (4x)
clean_latent_4x_indices=clean_latent_4x_indices.squeeze(0), # Indices for clean_latents_4x
image_embeddings=img_emb,
# Note: We don't explicitly save past_offset_indices,
# but its size influences the absolute values in other indices.
)
def framepack_setup_parser(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
parser.add_argument("--image_encoder", type=str, required=True, help="Image encoder (CLIP) checkpoint path or directory")
parser.add_argument("--latent_window_size", type=int, default=9, help="FramePack latent window size (default 9)")
parser.add_argument(
"--vanilla_sampling",
action="store_true",
help="Generate cache for vanilla (autoregressive) sampling instead of inference emulation",
)
return parser
def main(args: argparse.Namespace):
device = args.device if hasattr(args, "device") and args.device else ("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device(device)
# Load dataset config
blueprint_generator = BlueprintGenerator(ConfigSanitizer())
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_utils.load_user_config(args.dataset_config)
blueprint = blueprint_generator.generate(user_config, args, architecture=ARCHITECTURE_FRAMEPACK)
train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group)
datasets = train_dataset_group.datasets
if args.debug_mode is not None:
cache_latents.show_datasets(
datasets, args.debug_mode, args.console_width, args.console_back, args.console_num_images, fps=16
)
return
assert args.vae is not None, "vae checkpoint is required"
logger.info(f"Loading VAE model from {args.vae}")
vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device=device)
vae.to(device)
logger.info(f"Loading image encoder from {args.image_encoder}")
feature_extractor, image_encoder = load_image_encoders(args)
image_encoder.eval()
image_encoder.to(device)
logger.info(f"Cache generation mode: {'Vanilla Sampling' if args.vanilla_sampling else 'Inference Emulation'}")
# encoding closure
def encode(batch: List[ItemInfo]):
encode_and_save_batch(vae, feature_extractor, image_encoder, batch, args.latent_window_size, args.vanilla_sampling)
# reuse core loop from cache_latents with no change
encode_datasets_framepack(datasets, encode, args)
def append_section_idx_to_latent_cache_path(latent_cache_path: str, section_idx: int) -> str:
tokens = latent_cache_path.split("_")
tokens[-3] = f"{tokens[-3]}-{section_idx:04d}" # append section index to "frame_pos-count"
return "_".join(tokens)
def encode_datasets_framepack(datasets: list[BaseDataset], encode: callable, args: argparse.Namespace):
num_workers = args.num_workers if args.num_workers is not None else max(1, os.cpu_count() - 1)
for i, dataset in enumerate(datasets):
logger.info(f"Encoding dataset [{i}]")
all_latent_cache_paths = []
for _, batch in tqdm(dataset.retrieve_latent_cache_batches(num_workers)):
batch: list[ItemInfo] = batch # type: ignore
# latent_cache_path is "{basename}_{w:04d}x{h:04d}_{self.architecture}.safetensors"
# we expand it to "{basename}_{section_idx:04d}_{w:04d}x{h:04d}_{self.architecture}.safetensors"
filtered_batch = []
for item in batch:
latent_f = (item.frame_count - 1) // 4 + 1
num_sections = math.floor((latent_f - 1) / args.latent_window_size)
all_existing = True
for sec in range(num_sections):
p = append_section_idx_to_latent_cache_path(item.latent_cache_path, sec)
all_latent_cache_paths.append(p)
all_existing = all_existing and os.path.exists(p)
if all_existing:
filtered_batch.append(item)
if args.skip_existing:
if len(filtered_batch) == 0:
continue
batch = filtered_batch
bs = args.batch_size if args.batch_size is not None else len(batch)
for i in range(0, len(batch), bs):
encode(batch[i : i + bs])
# normalize paths
all_latent_cache_paths = [os.path.normpath(p) for p in all_latent_cache_paths]
all_latent_cache_paths = set(all_latent_cache_paths)
# remove old cache files not in the dataset
all_cache_files = dataset.get_all_latent_cache_files()
for cache_file in all_cache_files:
if os.path.normpath(cache_file) not in all_latent_cache_paths:
if args.keep_cache:
logger.info(f"Keep cache file not in the dataset: {cache_file}")
else:
os.remove(cache_file)
logger.info(f"Removed old cache file: {cache_file}")
if __name__ == "__main__":
parser = cache_latents.setup_parser_common()
parser = cache_latents.hv_setup_parser(parser) # VAE
parser = framepack_setup_parser(parser)
args = parser.parse_args()
if args.vae_dtype is not None:
raise ValueError("VAE dtype is not supported in FramePack")
# if args.batch_size != 1:
# args.batch_size = 1
# logger.info("Batch size is set to 1 for FramePack.")
main(args)
|