File size: 70,853 Bytes
ef46f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
import argparse
from datetime import datetime
import gc
import random
import os
import re
import time
import math
import copy
from types import ModuleType, SimpleNamespace
from typing import Tuple, Optional, List, Union, Any, Dict

import torch
import accelerate
from accelerate import Accelerator
from safetensors.torch import load_file, save_file
from safetensors import safe_open
from PIL import Image
import cv2
import numpy as np
import torchvision.transforms.functional as TF
from tqdm import tqdm

from networks import lora_wan
from utils.safetensors_utils import mem_eff_save_file, load_safetensors
from wan.configs import WAN_CONFIGS, SUPPORTED_SIZES
import wan
from wan.modules.model import WanModel, load_wan_model, detect_wan_sd_dtype
from wan.modules.vae import WanVAE
from wan.modules.t5 import T5EncoderModel
from wan.modules.clip import CLIPModel
from modules.scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
from wan.utils.fm_solvers import FlowDPMSolverMultistepScheduler, get_sampling_sigmas, retrieve_timesteps
from wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler

try:
    from lycoris.kohya import create_network_from_weights
except:
    pass

from utils.model_utils import str_to_dtype
from utils.device_utils import clean_memory_on_device
from hv_generate_video import save_images_grid, save_videos_grid, synchronize_device
from dataset.image_video_dataset import load_video

import logging

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)


class GenerationSettings:
    def __init__(
        self, device: torch.device, cfg, dit_dtype: torch.dtype, dit_weight_dtype: Optional[torch.dtype], vae_dtype: torch.dtype
    ):
        self.device = device
        self.cfg = cfg
        self.dit_dtype = dit_dtype
        self.dit_weight_dtype = dit_weight_dtype
        self.vae_dtype = vae_dtype


def parse_args() -> argparse.Namespace:
    """parse command line arguments"""
    parser = argparse.ArgumentParser(description="Wan 2.1 inference script")

    # WAN arguments
    parser.add_argument("--ckpt_dir", type=str, default=None, help="The path to the checkpoint directory (Wan 2.1 official).")
    parser.add_argument("--task", type=str, default="t2v-14B", choices=list(WAN_CONFIGS.keys()), help="The task to run.")
    parser.add_argument(
        "--sample_solver", type=str, default="unipc", choices=["unipc", "dpm++", "vanilla"], help="The solver used to sample."
    )

    parser.add_argument("--dit", type=str, default=None, help="DiT checkpoint path")
    parser.add_argument("--vae", type=str, default=None, help="VAE checkpoint path")
    parser.add_argument("--vae_dtype", type=str, default=None, help="data type for VAE, default is bfloat16")
    parser.add_argument("--vae_cache_cpu", action="store_true", help="cache features in VAE on CPU")
    parser.add_argument("--t5", type=str, default=None, help="text encoder (T5) checkpoint path")
    parser.add_argument("--clip", type=str, default=None, help="text encoder (CLIP) checkpoint path")
    # LoRA
    parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path")
    parser.add_argument("--lora_multiplier", type=float, nargs="*", default=1.0, help="LoRA multiplier")
    parser.add_argument("--include_patterns", type=str, nargs="*", default=None, help="LoRA module include patterns")
    parser.add_argument("--exclude_patterns", type=str, nargs="*", default=None, help="LoRA module exclude patterns")
    parser.add_argument(
        "--save_merged_model",
        type=str,
        default=None,
        help="Save merged model to path. If specified, no inference will be performed.",
    )

    # inference
    parser.add_argument("--prompt", type=str, default=None, help="prompt for generation")
    parser.add_argument(
        "--negative_prompt",
        type=str,
        default=None,
        help="negative prompt for generation, use default negative prompt if not specified",
    )
    parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size, height and width")
    parser.add_argument("--video_length", type=int, default=None, help="video length, Default depends on task")
    parser.add_argument("--fps", type=int, default=16, help="video fps, Default is 16")
    parser.add_argument("--infer_steps", type=int, default=None, help="number of inference steps")
    parser.add_argument("--save_path", type=str, required=True, help="path to save generated video")
    parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
    parser.add_argument(
        "--cpu_noise", action="store_true", help="Use CPU to generate noise (compatible with ComfyUI). Default is False."
    )
    parser.add_argument(
        "--guidance_scale",
        type=float,
        default=5.0,
        help="Guidance scale for classifier free guidance. Default is 5.0.",
    )
    parser.add_argument("--video_path", type=str, default=None, help="path to video for video2video inference")
    parser.add_argument("--image_path", type=str, default=None, help="path to image for image2video inference")
    parser.add_argument("--end_image_path", type=str, default=None, help="path to end image for image2video inference")
    parser.add_argument(
        "--control_path",
        type=str,
        default=None,
        help="path to control video for inference with controlnet. video file or directory with images",
    )
    parser.add_argument("--trim_tail_frames", type=int, default=0, help="trim tail N frames from the video before saving")
    parser.add_argument(
        "--cfg_skip_mode",
        type=str,
        default="none",
        choices=["early", "late", "middle", "early_late", "alternate", "none"],
        help="CFG skip mode. each mode skips different parts of the CFG. "
        " early: initial steps, late: later steps, middle: middle steps, early_late: both early and late, alternate: alternate, none: no skip (default)",
    )
    parser.add_argument(
        "--cfg_apply_ratio",
        type=float,
        default=None,
        help="The ratio of steps to apply CFG (0.0 to 1.0). Default is None (apply all steps).",
    )
    parser.add_argument(
        "--slg_layers", type=str, default=None, help="Skip block (layer) indices for SLG (Skip Layer Guidance), comma separated"
    )
    parser.add_argument(
        "--slg_scale",
        type=float,
        default=3.0,
        help="scale for SLG classifier free guidance. Default is 3.0. Ignored if slg_mode is None or uncond",
    )
    parser.add_argument("--slg_start", type=float, default=0.0, help="start ratio for inference steps for SLG. Default is 0.0.")
    parser.add_argument("--slg_end", type=float, default=0.3, help="end ratio for inference steps for SLG. Default is 0.3.")
    parser.add_argument(
        "--slg_mode",
        type=str,
        default=None,
        choices=["original", "uncond"],
        help="SLG mode. original: same as SD3, uncond: replace uncond pred with SLG pred",
    )

    # Flow Matching
    parser.add_argument(
        "--flow_shift",
        type=float,
        default=None,
        help="Shift factor for flow matching schedulers. Default depends on task.",
    )

    parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model")
    parser.add_argument("--fp8_scaled", action="store_true", help="use scaled fp8 for DiT, only for fp8")
    parser.add_argument("--fp8_fast", action="store_true", help="Enable fast FP8 arithmetic (RTX 4XXX+), only for fp8_scaled")
    parser.add_argument("--fp8_t5", action="store_true", help="use fp8 for Text Encoder model")
    parser.add_argument(
        "--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU"
    )
    parser.add_argument(
        "--attn_mode",
        type=str,
        default="torch",
        choices=["flash", "flash2", "flash3", "torch", "sageattn", "xformers", "sdpa"],
        help="attention mode",
    )
    parser.add_argument("--blocks_to_swap", type=int, default=0, help="number of blocks to swap in the model")
    parser.add_argument(
        "--output_type", type=str, default="video", choices=["video", "images", "latent", "both"], help="output type"
    )
    parser.add_argument("--no_metadata", action="store_true", help="do not save metadata")
    parser.add_argument("--latent_path", type=str, nargs="*", default=None, help="path to latent for decode. no inference")
    parser.add_argument("--lycoris", action="store_true", help="use lycoris for inference")
    parser.add_argument("--compile", action="store_true", help="Enable torch.compile")
    parser.add_argument(
        "--compile_args",
        nargs=4,
        metavar=("BACKEND", "MODE", "DYNAMIC", "FULLGRAPH"),
        default=["inductor", "max-autotune-no-cudagraphs", "False", "False"],
        help="Torch.compile settings",
    )

    # New arguments for batch and interactive modes
    parser.add_argument("--from_file", type=str, default=None, help="Read prompts from a file")
    parser.add_argument("--interactive", action="store_true", help="Interactive mode: read prompts from console")

    args = parser.parse_args()

    # Validate arguments
    if args.from_file and args.interactive:
        raise ValueError("Cannot use both --from_file and --interactive at the same time")

    if args.prompt is None and not args.from_file and not args.interactive and args.latent_path is None:
        raise ValueError("Either --prompt, --from_file, --interactive, or --latent_path must be specified")

    assert (args.latent_path is None or len(args.latent_path) == 0) or (
        args.output_type == "images" or args.output_type == "video"
    ), "latent_path is only supported for images or video output"

    return args


def parse_prompt_line(line: str) -> Dict[str, Any]:
    """Parse a prompt line into a dictionary of argument overrides

    Args:
        line: Prompt line with options

    Returns:
        Dict[str, Any]: Dictionary of argument overrides
    """
    # TODO common function with hv_train_network.line_to_prompt_dict
    parts = line.split(" --")
    prompt = parts[0].strip()

    # Create dictionary of overrides
    overrides = {"prompt": prompt}

    for part in parts[1:]:
        if not part.strip():
            continue
        option_parts = part.split(" ", 1)
        option = option_parts[0].strip()
        value = option_parts[1].strip() if len(option_parts) > 1 else ""

        # Map options to argument names
        if option == "w":
            overrides["video_size_width"] = int(value)
        elif option == "h":
            overrides["video_size_height"] = int(value)
        elif option == "f":
            overrides["video_length"] = int(value)
        elif option == "d":
            overrides["seed"] = int(value)
        elif option == "s":
            overrides["infer_steps"] = int(value)
        elif option == "g" or option == "l":
            overrides["guidance_scale"] = float(value)
        elif option == "fs":
            overrides["flow_shift"] = float(value)
        elif option == "i":
            overrides["image_path"] = value
        elif option == "cn":
            overrides["control_path"] = value
        elif option == "n":
            overrides["negative_prompt"] = value

    return overrides


def apply_overrides(args: argparse.Namespace, overrides: Dict[str, Any]) -> argparse.Namespace:
    """Apply overrides to args

    Args:
        args: Original arguments
        overrides: Dictionary of overrides

    Returns:
        argparse.Namespace: New arguments with overrides applied
    """
    args_copy = copy.deepcopy(args)

    for key, value in overrides.items():
        if key == "video_size_width":
            args_copy.video_size[1] = value
        elif key == "video_size_height":
            args_copy.video_size[0] = value
        else:
            setattr(args_copy, key, value)

    return args_copy


def get_task_defaults(task: str, size: Optional[Tuple[int, int]] = None) -> Tuple[int, float, int, bool]:
    """Return default values for each task

    Args:
        task: task name (t2v, t2i, i2v etc.)
        size: size of the video (width, height)

    Returns:
        Tuple[int, float, int, bool]: (infer_steps, flow_shift, video_length, needs_clip)
    """
    width, height = size if size else (0, 0)

    if "t2i" in task:
        return 50, 5.0, 1, False
    elif "i2v" in task:
        flow_shift = 3.0 if (width == 832 and height == 480) or (width == 480 and height == 832) else 5.0
        return 40, flow_shift, 81, True
    else:  # t2v or default
        return 50, 5.0, 81, False


def setup_args(args: argparse.Namespace) -> argparse.Namespace:
    """Validate and set default values for optional arguments

    Args:
        args: command line arguments

    Returns:
        argparse.Namespace: updated arguments
    """
    # Get default values for the task
    infer_steps, flow_shift, video_length, _ = get_task_defaults(args.task, tuple(args.video_size))

    # Apply default values to unset arguments
    if args.infer_steps is None:
        args.infer_steps = infer_steps
    if args.flow_shift is None:
        args.flow_shift = flow_shift
    if args.video_length is None:
        args.video_length = video_length

    # Force video_length to 1 for t2i tasks
    if "t2i" in args.task:
        assert args.video_length == 1, f"video_length should be 1 for task {args.task}"

    # parse slg_layers
    if args.slg_layers is not None:
        args.slg_layers = list(map(int, args.slg_layers.split(",")))

    return args


def check_inputs(args: argparse.Namespace) -> Tuple[int, int, int]:
    """Validate video size and length

    Args:
        args: command line arguments

    Returns:
        Tuple[int, int, int]: (height, width, video_length)
    """
    height = args.video_size[0]
    width = args.video_size[1]
    size = f"{width}*{height}"

    if size not in SUPPORTED_SIZES[args.task]:
        logger.warning(f"Size {size} is not supported for task {args.task}. Supported sizes are {SUPPORTED_SIZES[args.task]}.")

    video_length = args.video_length

    if height % 8 != 0 or width % 8 != 0:
        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

    return height, width, video_length


def calculate_dimensions(video_size: Tuple[int, int], video_length: int, config) -> Tuple[Tuple[int, int, int, int], int]:
    """calculate dimensions for the generation

    Args:
        video_size: video frame size (height, width)
        video_length: number of frames in the video
        config: model configuration

    Returns:
        Tuple[Tuple[int, int, int, int], int]:
            ((channels, frames, height, width), seq_len)
    """
    height, width = video_size
    frames = video_length

    # calculate latent space dimensions
    lat_f = (frames - 1) // config.vae_stride[0] + 1
    lat_h = height // config.vae_stride[1]
    lat_w = width // config.vae_stride[2]

    # calculate sequence length
    seq_len = math.ceil((lat_h * lat_w) / (config.patch_size[1] * config.patch_size[2]) * lat_f)

    return ((16, lat_f, lat_h, lat_w), seq_len)


def load_vae(args: argparse.Namespace, config, device: torch.device, dtype: torch.dtype) -> WanVAE:
    """load VAE model

    Args:
        args: command line arguments
        config: model configuration
        device: device to use
        dtype: data type for the model

    Returns:
        WanVAE: loaded VAE model
    """
    vae_path = args.vae if args.vae is not None else os.path.join(args.ckpt_dir, config.vae_checkpoint)

    logger.info(f"Loading VAE model from {vae_path}")
    cache_device = torch.device("cpu") if args.vae_cache_cpu else None
    vae = WanVAE(vae_path=vae_path, device=device, dtype=dtype, cache_device=cache_device)
    return vae


def load_text_encoder(args: argparse.Namespace, config, device: torch.device) -> T5EncoderModel:
    """load text encoder (T5) model

    Args:
        args: command line arguments
        config: model configuration
        device: device to use

    Returns:
        T5EncoderModel: loaded text encoder model
    """
    checkpoint_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.t5_checkpoint)
    tokenizer_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.t5_tokenizer)

    text_encoder = T5EncoderModel(
        text_len=config.text_len,
        dtype=config.t5_dtype,
        device=device,
        checkpoint_path=checkpoint_path,
        tokenizer_path=tokenizer_path,
        weight_path=args.t5,
        fp8=args.fp8_t5,
    )

    return text_encoder


def load_clip_model(args: argparse.Namespace, config, device: torch.device) -> CLIPModel:
    """load CLIP model (for I2V only)

    Args:
        args: command line arguments
        config: model configuration
        device: device to use

    Returns:
        CLIPModel: loaded CLIP model
    """
    checkpoint_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.clip_checkpoint)
    tokenizer_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.clip_tokenizer)

    clip = CLIPModel(
        dtype=config.clip_dtype,
        device=device,
        checkpoint_path=checkpoint_path,
        tokenizer_path=tokenizer_path,
        weight_path=args.clip,
    )

    return clip


def load_dit_model(
    args: argparse.Namespace,
    config,
    device: torch.device,
    dit_dtype: torch.dtype,
    dit_weight_dtype: Optional[torch.dtype] = None,
    is_i2v: bool = False,
) -> WanModel:
    """load DiT model

    Args:
        args: command line arguments
        config: model configuration
        device: device to use
        dit_dtype: data type for the model
        dit_weight_dtype: data type for the model weights. None for as-is
        is_i2v: I2V mode

    Returns:
        WanModel: loaded DiT model
    """
    loading_device = "cpu"
    if args.blocks_to_swap == 0 and args.lora_weight is None and not args.fp8_scaled:
        loading_device = device

    loading_weight_dtype = dit_weight_dtype
    if args.fp8_scaled or args.lora_weight is not None:
        loading_weight_dtype = dit_dtype  # load as-is

    # do not fp8 optimize because we will merge LoRA weights
    model = load_wan_model(config, device, args.dit, args.attn_mode, False, loading_device, loading_weight_dtype, False)

    return model


def merge_lora_weights(lora_module: ModuleType, model: torch.nn.Module, args: argparse.Namespace, device: torch.device) -> None:
    """merge LoRA weights to the model

    Args:
        model: DiT model
        args: command line arguments
        device: device to use
    """
    if args.lora_weight is None or len(args.lora_weight) == 0:
        return

    for i, lora_weight in enumerate(args.lora_weight):
        if args.lora_multiplier is not None and len(args.lora_multiplier) > i:
            lora_multiplier = args.lora_multiplier[i]
        else:
            lora_multiplier = 1.0

        logger.info(f"Loading LoRA weights from {lora_weight} with multiplier {lora_multiplier}")
        weights_sd = load_file(lora_weight)

        # apply include/exclude patterns
        original_key_count = len(weights_sd.keys())
        if args.include_patterns is not None and len(args.include_patterns) > i:
            include_pattern = args.include_patterns[i]
            regex_include = re.compile(include_pattern)
            weights_sd = {k: v for k, v in weights_sd.items() if regex_include.search(k)}
            logger.info(f"Filtered keys with include pattern {include_pattern}: {original_key_count} -> {len(weights_sd.keys())}")
        if args.exclude_patterns is not None and len(args.exclude_patterns) > i:
            original_key_count_ex = len(weights_sd.keys())
            exclude_pattern = args.exclude_patterns[i]
            regex_exclude = re.compile(exclude_pattern)
            weights_sd = {k: v for k, v in weights_sd.items() if not regex_exclude.search(k)}
            logger.info(
                f"Filtered keys with exclude pattern {exclude_pattern}: {original_key_count_ex} -> {len(weights_sd.keys())}"
            )
        if len(weights_sd) != original_key_count:
            remaining_keys = list(set([k.split(".", 1)[0] for k in weights_sd.keys()]))
            remaining_keys.sort()
            logger.info(f"Remaining LoRA modules after filtering: {remaining_keys}")
            if len(weights_sd) == 0:
                logger.warning(f"No keys left after filtering.")

        if args.lycoris:
            lycoris_net, _ = create_network_from_weights(
                multiplier=lora_multiplier,
                file=None,
                weights_sd=weights_sd,
                unet=model,
                text_encoder=None,
                vae=None,
                for_inference=True,
            )
            lycoris_net.merge_to(None, model, weights_sd, dtype=None, device=device)
        else:
            network = lora_module.create_arch_network_from_weights(lora_multiplier, weights_sd, unet=model, for_inference=True)
            network.merge_to(None, model, weights_sd, device=device, non_blocking=True)

        synchronize_device(device)
        logger.info("LoRA weights loaded")

    # save model here before casting to dit_weight_dtype
    if args.save_merged_model:
        logger.info(f"Saving merged model to {args.save_merged_model}")
        mem_eff_save_file(model.state_dict(), args.save_merged_model)  # save_file needs a lot of memory
        logger.info("Merged model saved")


def optimize_model(
    model: WanModel, args: argparse.Namespace, device: torch.device, dit_dtype: torch.dtype, dit_weight_dtype: torch.dtype
) -> None:
    """optimize the model (FP8 conversion, device move etc.)

    Args:
        model: dit model
        args: command line arguments
        device: device to use
        dit_dtype: dtype for the model
        dit_weight_dtype: dtype for the model weights
    """
    if args.fp8_scaled:
        # load state dict as-is and optimize to fp8
        state_dict = model.state_dict()

        # if no blocks to swap, we can move the weights to GPU after optimization on GPU (omit redundant CPU->GPU copy)
        move_to_device = args.blocks_to_swap == 0  # if blocks_to_swap > 0, we will keep the model on CPU
        state_dict = model.fp8_optimization(state_dict, device, move_to_device, use_scaled_mm=args.fp8_fast)

        info = model.load_state_dict(state_dict, strict=True, assign=True)
        logger.info(f"Loaded FP8 optimized weights: {info}")

        if args.blocks_to_swap == 0:
            model.to(device)  # make sure all parameters are on the right device (e.g. RoPE etc.)
    else:
        # simple cast to dit_dtype
        target_dtype = None  # load as-is (dit_weight_dtype == dtype of the weights in state_dict)
        target_device = None

        if dit_weight_dtype is not None:  # in case of args.fp8 and not args.fp8_scaled
            logger.info(f"Convert model to {dit_weight_dtype}")
            target_dtype = dit_weight_dtype

        if args.blocks_to_swap == 0:
            logger.info(f"Move model to device: {device}")
            target_device = device

        model.to(target_device, target_dtype)  # move and cast  at the same time. this reduces redundant copy operations

    if args.compile:
        compile_backend, compile_mode, compile_dynamic, compile_fullgraph = args.compile_args
        logger.info(
            f"Torch Compiling[Backend: {compile_backend}; Mode: {compile_mode}; Dynamic: {compile_dynamic}; Fullgraph: {compile_fullgraph}]"
        )
        torch._dynamo.config.cache_size_limit = 32
        for i in range(len(model.blocks)):
            model.blocks[i] = torch.compile(
                model.blocks[i],
                backend=compile_backend,
                mode=compile_mode,
                dynamic=compile_dynamic.lower() in "true",
                fullgraph=compile_fullgraph.lower() in "true",
            )

    if args.blocks_to_swap > 0:
        logger.info(f"Enable swap {args.blocks_to_swap} blocks to CPU from device: {device}")
        model.enable_block_swap(args.blocks_to_swap, device, supports_backward=False)
        model.move_to_device_except_swap_blocks(device)
        model.prepare_block_swap_before_forward()
    else:
        # make sure the model is on the right device
        model.to(device)

    model.eval().requires_grad_(False)
    clean_memory_on_device(device)


def prepare_t2v_inputs(
    args: argparse.Namespace,
    config,
    accelerator: Accelerator,
    device: torch.device,
    vae: Optional[WanVAE] = None,
    encoded_context: Optional[Dict] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
    """Prepare inputs for T2V

    Args:
        args: command line arguments
        config: model configuration
        accelerator: Accelerator instance
        device: device to use
        vae: VAE model for control video encoding
        encoded_context: Pre-encoded text context

    Returns:
        Tuple[torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
            (noise, context, context_null, (arg_c, arg_null))
    """
    # Prepare inputs for T2V
    # calculate dimensions and sequence length
    height, width = args.video_size
    frames = args.video_length
    (_, lat_f, lat_h, lat_w), seq_len = calculate_dimensions(args.video_size, args.video_length, config)
    target_shape = (16, lat_f, lat_h, lat_w)

    # configure negative prompt
    n_prompt = args.negative_prompt if args.negative_prompt else config.sample_neg_prompt

    # set seed
    seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
    if not args.cpu_noise:
        seed_g = torch.Generator(device=device)
        seed_g.manual_seed(seed)
    else:
        # ComfyUI compatible noise
        seed_g = torch.manual_seed(seed)

    if encoded_context is None:
        # load text encoder
        text_encoder = load_text_encoder(args, config, device)
        text_encoder.model.to(device)

        # encode prompt
        with torch.no_grad():
            if args.fp8_t5:
                with torch.amp.autocast(device_type=device.type, dtype=config.t5_dtype):
                    context = text_encoder([args.prompt], device)
                    context_null = text_encoder([n_prompt], device)
            else:
                context = text_encoder([args.prompt], device)
                context_null = text_encoder([n_prompt], device)

        # free text encoder and clean memory
        del text_encoder
        clean_memory_on_device(device)
    else:
        # Use pre-encoded context
        context = encoded_context["context"]
        context_null = encoded_context["context_null"]

    # Fun-Control: encode control video to latent space
    if config.is_fun_control:
        # TODO use same resizing as for image
        logger.info(f"Encoding control video to latent space")
        # C, F, H, W
        control_video = load_control_video(args.control_path, frames, height, width).to(device)
        vae.to_device(device)
        with torch.autocast(device_type=device.type, dtype=vae.dtype), torch.no_grad():
            control_latent = vae.encode([control_video])[0]
        y = torch.concat([control_latent, torch.zeros_like(control_latent)], dim=0)  # add control video latent
        vae.to_device("cpu")
    else:
        y = None

    # generate noise
    noise = torch.randn(target_shape, dtype=torch.float32, generator=seed_g, device=device if not args.cpu_noise else "cpu")
    noise = noise.to(device)

    # prepare model input arguments
    arg_c = {"context": context, "seq_len": seq_len}
    arg_null = {"context": context_null, "seq_len": seq_len}
    if y is not None:
        arg_c["y"] = [y]
        arg_null["y"] = [y]

    return noise, context, context_null, (arg_c, arg_null)


def prepare_i2v_inputs(
    args: argparse.Namespace,
    config,
    accelerator: Accelerator,
    device: torch.device,
    vae: WanVAE,
    encoded_context: Optional[Dict] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
    """Prepare inputs for I2V

    Args:
        args: command line arguments
        config: model configuration
        accelerator: Accelerator instance
        device: device to use
        vae: VAE model, used for image encoding
        encoded_context: Pre-encoded text context

    Returns:
        Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
            (noise, context, context_null, y, (arg_c, arg_null))
    """
    # get video dimensions
    height, width = args.video_size
    frames = args.video_length
    max_area = width * height

    # load image
    img = Image.open(args.image_path).convert("RGB")

    # convert to numpy
    img_cv2 = np.array(img)  # PIL to numpy

    # convert to tensor (-1 to 1)
    img_tensor = TF.to_tensor(img).sub_(0.5).div_(0.5).to(device)

    # end frame image
    if args.end_image_path is not None:
        end_img = Image.open(args.end_image_path).convert("RGB")
        end_img_cv2 = np.array(end_img)  # PIL to numpy
    else:
        end_img = None
        end_img_cv2 = None
    has_end_image = end_img is not None

    # calculate latent dimensions: keep aspect ratio
    height, width = img_tensor.shape[1:]
    aspect_ratio = height / width
    lat_h = round(np.sqrt(max_area * aspect_ratio) // config.vae_stride[1] // config.patch_size[1] * config.patch_size[1])
    lat_w = round(np.sqrt(max_area / aspect_ratio) // config.vae_stride[2] // config.patch_size[2] * config.patch_size[2])
    height = lat_h * config.vae_stride[1]
    width = lat_w * config.vae_stride[2]
    lat_f = (frames - 1) // config.vae_stride[0] + 1  # size of latent frames
    max_seq_len = (lat_f + (1 if has_end_image else 0)) * lat_h * lat_w // (config.patch_size[1] * config.patch_size[2])

    # set seed
    seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
    if not args.cpu_noise:
        seed_g = torch.Generator(device=device)
        seed_g.manual_seed(seed)
    else:
        # ComfyUI compatible noise
        seed_g = torch.manual_seed(seed)

    # generate noise
    noise = torch.randn(
        16,
        lat_f + (1 if has_end_image else 0),
        lat_h,
        lat_w,
        dtype=torch.float32,
        generator=seed_g,
        device=device if not args.cpu_noise else "cpu",
    )
    noise = noise.to(device)

    # configure negative prompt
    n_prompt = args.negative_prompt if args.negative_prompt else config.sample_neg_prompt

    if encoded_context is None:
        # load text encoder
        text_encoder = load_text_encoder(args, config, device)
        text_encoder.model.to(device)

        # encode prompt
        with torch.no_grad():
            if args.fp8_t5:
                with torch.amp.autocast(device_type=device.type, dtype=config.t5_dtype):
                    context = text_encoder([args.prompt], device)
                    context_null = text_encoder([n_prompt], device)
            else:
                context = text_encoder([args.prompt], device)
                context_null = text_encoder([n_prompt], device)

        # free text encoder and clean memory
        del text_encoder
        clean_memory_on_device(device)

        # load CLIP model
        clip = load_clip_model(args, config, device)
        clip.model.to(device)

        # encode image to CLIP context
        logger.info(f"Encoding image to CLIP context")
        with torch.amp.autocast(device_type=device.type, dtype=torch.float16), torch.no_grad():
            clip_context = clip.visual([img_tensor[:, None, :, :]])
        logger.info(f"Encoding complete")

        # free CLIP model and clean memory
        del clip
        clean_memory_on_device(device)
    else:
        # Use pre-encoded context
        context = encoded_context["context"]
        context_null = encoded_context["context_null"]
        clip_context = encoded_context["clip_context"]

    # encode image to latent space with VAE
    logger.info(f"Encoding image to latent space")
    vae.to_device(device)

    # resize image
    interpolation = cv2.INTER_AREA if height < img_cv2.shape[0] else cv2.INTER_CUBIC
    img_resized = cv2.resize(img_cv2, (width, height), interpolation=interpolation)
    img_resized = TF.to_tensor(img_resized).sub_(0.5).div_(0.5).to(device)  # -1 to 1, CHW
    img_resized = img_resized.unsqueeze(1)  # CFHW

    if has_end_image:
        interpolation = cv2.INTER_AREA if height < end_img_cv2.shape[1] else cv2.INTER_CUBIC
        end_img_resized = cv2.resize(end_img_cv2, (width, height), interpolation=interpolation)
        end_img_resized = TF.to_tensor(end_img_resized).sub_(0.5).div_(0.5).to(device)  # -1 to 1, CHW
        end_img_resized = end_img_resized.unsqueeze(1)  # CFHW

    # create mask for the first frame
    msk = torch.zeros(4, lat_f + (1 if has_end_image else 0), lat_h, lat_w, device=device)
    msk[:, 0] = 1
    if has_end_image:
        msk[:, -1] = 1

    # encode image to latent space
    with accelerator.autocast(), torch.no_grad():
        # padding to match the required number of frames
        padding_frames = frames - 1  # the first frame is image
        img_resized = torch.concat([img_resized, torch.zeros(3, padding_frames, height, width, device=device)], dim=1)
        y = vae.encode([img_resized])[0]

        if has_end_image:
            y_end = vae.encode([end_img_resized])[0]
            y = torch.concat([y, y_end], dim=1)  # add end frame

    y = torch.concat([msk, y])
    logger.info(f"Encoding complete")

    # Fun-Control: encode control video to latent space
    if config.is_fun_control:
        # TODO use same resizing as for image
        logger.info(f"Encoding control video to latent space")
        # C, F, H, W
        control_video = load_control_video(args.control_path, frames + (1 if has_end_image else 0), height, width).to(device)
        with accelerator.autocast(), torch.no_grad():
            control_latent = vae.encode([control_video])[0]
        y = y[msk.shape[0] :]  # remove mask because Fun-Control does not need it
        if has_end_image:
            y[:, 1:-1] = 0  # remove image latent except first and last frame. according to WanVideoWrapper, this doesn't work
        else:
            y[:, 1:] = 0  # remove image latent except first frame
        y = torch.concat([control_latent, y], dim=0)  # add control video latent

    # prepare model input arguments
    arg_c = {
        "context": [context[0]],
        "clip_fea": clip_context,
        "seq_len": max_seq_len,
        "y": [y],
    }

    arg_null = {
        "context": context_null,
        "clip_fea": clip_context,
        "seq_len": max_seq_len,
        "y": [y],
    }

    vae.to_device("cpu")  # move VAE to CPU to save memory
    clean_memory_on_device(device)

    return noise, context, context_null, y, (arg_c, arg_null)


def load_control_video(control_path: str, frames: int, height: int, width: int) -> torch.Tensor:
    """load control video to latent space

    Args:
        control_path: path to control video
        frames: number of frames in the video
        height: height of the video
        width: width of the video

    Returns:
        torch.Tensor: control video latent, CFHW
    """
    logger.info(f"Load control video from {control_path}")
    video = load_video(control_path, 0, frames, bucket_reso=(width, height))  # list of frames
    if len(video) < frames:
        raise ValueError(f"Video length is less than {frames}")
    # video = np.stack(video, axis=0)  # F, H, W, C
    video = torch.stack([TF.to_tensor(frame).sub_(0.5).div_(0.5) for frame in video], dim=0)  # F, C, H, W, -1 to 1
    video = video.permute(1, 0, 2, 3)  # C, F, H, W
    return video


def setup_scheduler(args: argparse.Namespace, config, device: torch.device) -> Tuple[Any, torch.Tensor]:
    """setup scheduler for sampling

    Args:
        args: command line arguments
        config: model configuration
        device: device to use

    Returns:
        Tuple[Any, torch.Tensor]: (scheduler, timesteps)
    """
    if args.sample_solver == "unipc":
        scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False)
        scheduler.set_timesteps(args.infer_steps, device=device, shift=args.flow_shift)
        timesteps = scheduler.timesteps
    elif args.sample_solver == "dpm++":
        scheduler = FlowDPMSolverMultistepScheduler(
            num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False
        )
        sampling_sigmas = get_sampling_sigmas(args.infer_steps, args.flow_shift)
        timesteps, _ = retrieve_timesteps(scheduler, device=device, sigmas=sampling_sigmas)
    elif args.sample_solver == "vanilla":
        scheduler = FlowMatchDiscreteScheduler(num_train_timesteps=config.num_train_timesteps, shift=args.flow_shift)
        scheduler.set_timesteps(args.infer_steps, device=device)
        timesteps = scheduler.timesteps

        # FlowMatchDiscreteScheduler does not support generator argument in step method
        org_step = scheduler.step

        def step_wrapper(
            model_output: torch.Tensor,
            timestep: Union[int, torch.Tensor],
            sample: torch.Tensor,
            return_dict: bool = True,
            generator=None,
        ):
            return org_step(model_output, timestep, sample, return_dict=return_dict)

        scheduler.step = step_wrapper
    else:
        raise NotImplementedError("Unsupported solver.")

    return scheduler, timesteps


def run_sampling(
    model: WanModel,
    noise: torch.Tensor,
    scheduler: Any,
    timesteps: torch.Tensor,
    args: argparse.Namespace,
    inputs: Tuple[dict, dict],
    device: torch.device,
    seed_g: torch.Generator,
    accelerator: Accelerator,
    is_i2v: bool = False,
    use_cpu_offload: bool = True,
) -> torch.Tensor:
    """run sampling
    Args:
        model: dit model
        noise: initial noise
        scheduler: scheduler for sampling
        timesteps: time steps for sampling
        args: command line arguments
        inputs: model input (arg_c, arg_null)
        device: device to use
        seed_g: random generator
        accelerator: Accelerator instance
        is_i2v: I2V mode (False means T2V mode)
        use_cpu_offload: Whether to offload tensors to CPU during processing
    Returns:
        torch.Tensor: generated latent
    """
    arg_c, arg_null = inputs

    latent = noise
    latent_storage_device = device if not use_cpu_offload else "cpu"
    latent = latent.to(latent_storage_device)

    # cfg skip
    apply_cfg_array = []
    num_timesteps = len(timesteps)

    if args.cfg_skip_mode != "none" and args.cfg_apply_ratio is not None:
        # Calculate thresholds based on cfg_apply_ratio
        apply_steps = int(num_timesteps * args.cfg_apply_ratio)

        if args.cfg_skip_mode == "early":
            # Skip CFG in early steps, apply in late steps
            start_index = num_timesteps - apply_steps
            end_index = num_timesteps
        elif args.cfg_skip_mode == "late":
            # Skip CFG in late steps, apply in early steps
            start_index = 0
            end_index = apply_steps
        elif args.cfg_skip_mode == "early_late":
            # Skip CFG in early and late steps, apply in middle steps
            start_index = (num_timesteps - apply_steps) // 2
            end_index = start_index + apply_steps
        elif args.cfg_skip_mode == "middle":
            # Skip CFG in middle steps, apply in early and late steps
            skip_steps = num_timesteps - apply_steps
            middle_start = (num_timesteps - skip_steps) // 2
            middle_end = middle_start + skip_steps

        w = 0.0
        for step_idx in range(num_timesteps):
            if args.cfg_skip_mode == "alternate":
                # accumulate w and apply CFG when w >= 1.0
                w += args.cfg_apply_ratio
                apply = w >= 1.0
                if apply:
                    w -= 1.0
            elif args.cfg_skip_mode == "middle":
                # Skip CFG in early and late steps, apply in middle steps
                apply = step_idx < middle_start or step_idx >= middle_end
            else:
                # Apply CFG on some steps based on ratio
                apply = step_idx >= start_index and step_idx < end_index

            apply_cfg_array.append(apply)

        pattern = ["A" if apply else "S" for apply in apply_cfg_array]
        pattern = "".join(pattern)
        logger.info(f"CFG skip mode: {args.cfg_skip_mode}, apply ratio: {args.cfg_apply_ratio}, pattern: {pattern}")
    else:
        # Apply CFG on all steps
        apply_cfg_array = [True] * num_timesteps

    # SLG original implementation is based on https://github.com/Stability-AI/sd3.5/blob/main/sd3_impls.py
    slg_start_step = int(args.slg_start * num_timesteps)
    slg_end_step = int(args.slg_end * num_timesteps)

    for i, t in enumerate(tqdm(timesteps)):
        # latent is on CPU if use_cpu_offload is True
        latent_model_input = [latent.to(device)]
        timestep = torch.stack([t]).to(device)

        with accelerator.autocast(), torch.no_grad():
            noise_pred_cond = model(latent_model_input, t=timestep, **arg_c)[0].to(latent_storage_device)

            apply_cfg = apply_cfg_array[i]  # apply CFG or not
            if apply_cfg:
                apply_slg = i >= slg_start_step and i < slg_end_step
                # print(f"Applying SLG: {apply_slg}, i: {i}, slg_start_step: {slg_start_step}, slg_end_step: {slg_end_step}")
                if args.slg_mode == "original" and apply_slg:
                    noise_pred_uncond = model(latent_model_input, t=timestep, **arg_null)[0].to(latent_storage_device)

                    # apply guidance
                    # SD3 formula: scaled = neg_out + (pos_out - neg_out) * cond_scale
                    noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond)

                    # calculate skip layer out
                    skip_layer_out = model(latent_model_input, t=timestep, skip_block_indices=args.slg_layers, **arg_null)[0].to(
                        latent_storage_device
                    )

                    # apply skip layer guidance
                    # SD3 formula: scaled = scaled + (pos_out - skip_layer_out) * self.slg
                    noise_pred = noise_pred + args.slg_scale * (noise_pred_cond - skip_layer_out)
                elif args.slg_mode == "uncond" and apply_slg:
                    # noise_pred_uncond is skip layer out
                    noise_pred_uncond = model(latent_model_input, t=timestep, skip_block_indices=args.slg_layers, **arg_null)[0].to(
                        latent_storage_device
                    )

                    # apply guidance
                    noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond)

                else:
                    # normal guidance
                    noise_pred_uncond = model(latent_model_input, t=timestep, **arg_null)[0].to(latent_storage_device)

                    # apply guidance
                    noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond)
            else:
                noise_pred = noise_pred_cond

            # step
            latent_input = latent.unsqueeze(0)
            temp_x0 = scheduler.step(noise_pred.unsqueeze(0), t, latent_input, return_dict=False, generator=seed_g)[0]

            # update latent
            latent = temp_x0.squeeze(0)

    return latent


def generate(args: argparse.Namespace, gen_settings: GenerationSettings, shared_models: Optional[Dict] = None) -> torch.Tensor:
    """main function for generation

    Args:
        args: command line arguments
        shared_models: dictionary containing pre-loaded models and encoded data

    Returns:
        torch.Tensor: generated latent
    """
    device, cfg, dit_dtype, dit_weight_dtype, vae_dtype = (
        gen_settings.device,
        gen_settings.cfg,
        gen_settings.dit_dtype,
        gen_settings.dit_weight_dtype,
        gen_settings.vae_dtype,
    )

    # prepare accelerator
    mixed_precision = "bf16" if dit_dtype == torch.bfloat16 else "fp16"
    accelerator = accelerate.Accelerator(mixed_precision=mixed_precision)

    # I2V or T2V
    is_i2v = "i2v" in args.task

    # prepare seed
    seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
    args.seed = seed  # set seed to args for saving

    # Check if we have shared models
    if shared_models is not None:
        # Use shared models and encoded data
        vae = shared_models.get("vae")
        model = shared_models.get("model")
        encoded_context = shared_models.get("encoded_contexts", {}).get(args.prompt)

        # prepare inputs
        if is_i2v:
            # I2V
            noise, context, context_null, y, inputs = prepare_i2v_inputs(args, cfg, accelerator, device, vae, encoded_context)
        else:
            # T2V
            noise, context, context_null, inputs = prepare_t2v_inputs(args, cfg, accelerator, device, vae, encoded_context)
    else:
        # prepare inputs without shared models
        if is_i2v:
            # I2V: need text encoder, VAE and CLIP
            vae = load_vae(args, cfg, device, vae_dtype)
            noise, context, context_null, y, inputs = prepare_i2v_inputs(args, cfg, accelerator, device, vae)
            # vae is on CPU after prepare_i2v_inputs
        else:
            # T2V: need text encoder
            vae = None
            if cfg.is_fun_control:
                # Fun-Control: need VAE for encoding control video
                vae = load_vae(args, cfg, device, vae_dtype)
            noise, context, context_null, inputs = prepare_t2v_inputs(args, cfg, accelerator, device, vae)

        # load DiT model
        model = load_dit_model(args, cfg, device, dit_dtype, dit_weight_dtype, is_i2v)

        # merge LoRA weights
        if args.lora_weight is not None and len(args.lora_weight) > 0:
            merge_lora_weights(lora_wan, model, args, device)

            # if we only want to save the model, we can skip the rest
            if args.save_merged_model:
                return None

        # optimize model: fp8 conversion, block swap etc.
        optimize_model(model, args, device, dit_dtype, dit_weight_dtype)

    # setup scheduler
    scheduler, timesteps = setup_scheduler(args, cfg, device)

    # set random generator
    seed_g = torch.Generator(device=device)
    seed_g.manual_seed(seed)

    # run sampling
    latent = run_sampling(model, noise, scheduler, timesteps, args, inputs, device, seed_g, accelerator, is_i2v)

    # Only clean up shared models if they were created within this function
    if shared_models is None:
        # free memory
        del model
        del scheduler
        synchronize_device(device)

        # wait for 5 seconds until block swap is done
        logger.info("Waiting for 5 seconds to finish block swap")
        time.sleep(5)

        gc.collect()
        clean_memory_on_device(device)

        # save VAE model for decoding
        if vae is None:
            args._vae = None
        else:
            args._vae = vae

    return latent


def decode_latent(latent: torch.Tensor, args: argparse.Namespace, cfg) -> torch.Tensor:
    """decode latent

    Args:
        latent: latent tensor
        args: command line arguments
        cfg: model configuration

    Returns:
        torch.Tensor: decoded video or image
    """
    device = torch.device(args.device)

    # load VAE model or use the one from the generation
    vae_dtype = str_to_dtype(args.vae_dtype) if args.vae_dtype is not None else torch.bfloat16
    if hasattr(args, "_vae") and args._vae is not None:
        vae = args._vae
    else:
        vae = load_vae(args, cfg, device, vae_dtype)

    vae.to_device(device)

    logger.info(f"Decoding video from latents: {latent.shape}")
    x0 = latent.to(device)

    with torch.autocast(device_type=device.type, dtype=vae_dtype), torch.no_grad():
        videos = vae.decode(x0)

    # some tail frames may be corrupted when end frame is used, we add an option to remove them
    if args.trim_tail_frames:
        videos[0] = videos[0][:, : -args.trim_tail_frames]

    logger.info(f"Decoding complete")
    video = videos[0]
    del videos
    video = video.to(torch.float32).cpu()

    return video


def save_latent(latent: torch.Tensor, args: argparse.Namespace, height: int, width: int) -> str:
    """Save latent to file

    Args:
        latent: latent tensor
        args: command line arguments
        height: height of frame
        width: width of frame

    Returns:
        str: Path to saved latent file
    """
    save_path = args.save_path
    os.makedirs(save_path, exist_ok=True)
    time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")

    seed = args.seed
    video_length = args.video_length
    latent_path = f"{save_path}/{time_flag}_{seed}_latent.safetensors"

    if args.no_metadata:
        metadata = None
    else:
        metadata = {
            "seeds": f"{seed}",
            "prompt": f"{args.prompt}",
            "height": f"{height}",
            "width": f"{width}",
            "video_length": f"{video_length}",
            "infer_steps": f"{args.infer_steps}",
            "guidance_scale": f"{args.guidance_scale}",
        }
        if args.negative_prompt is not None:
            metadata["negative_prompt"] = f"{args.negative_prompt}"

    sd = {"latent": latent}
    save_file(sd, latent_path, metadata=metadata)
    logger.info(f"Latent saved to: {latent_path}")

    return latent_path


def save_video(video: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None) -> str:
    """Save video to file

    Args:
        video: Video tensor
        args: command line arguments
        original_base_name: Original base name (if latents are loaded from files)

    Returns:
        str: Path to saved video file
    """
    save_path = args.save_path
    os.makedirs(save_path, exist_ok=True)
    time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")

    seed = args.seed
    original_name = "" if original_base_name is None else f"_{original_base_name}"
    video_path = f"{save_path}/{time_flag}_{seed}{original_name}.mp4"

    video = video.unsqueeze(0)
    save_videos_grid(video, video_path, fps=args.fps, rescale=True)
    logger.info(f"Video saved to: {video_path}")

    return video_path


def save_images(sample: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None) -> str:
    """Save images to directory

    Args:
        sample: Video tensor
        args: command line arguments
        original_base_name: Original base name (if latents are loaded from files)

    Returns:
        str: Path to saved images directory
    """
    save_path = args.save_path
    os.makedirs(save_path, exist_ok=True)
    time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")

    seed = args.seed
    original_name = "" if original_base_name is None else f"_{original_base_name}"
    image_name = f"{time_flag}_{seed}{original_name}"
    sample = sample.unsqueeze(0)
    save_images_grid(sample, save_path, image_name, rescale=True)
    logger.info(f"Sample images saved to: {save_path}/{image_name}")

    return f"{save_path}/{image_name}"


def save_output(
    latent: torch.Tensor, args: argparse.Namespace, cfg, height: int, width: int, original_base_names: Optional[List[str]] = None
) -> None:
    """save output

    Args:
        latent: latent tensor
        args: command line arguments
        cfg: model configuration
        height: height of frame
        width: width of frame
        original_base_names: original base names (if latents are loaded from files)
    """
    if args.output_type == "latent" or args.output_type == "both":
        # save latent
        save_latent(latent, args, height, width)

    if args.output_type == "video" or args.output_type == "both":
        # save video
        sample = decode_latent(latent.unsqueeze(0), args, cfg)
        original_name = "" if original_base_names is None else f"_{original_base_names[0]}"
        save_video(sample, args, original_name)

    elif args.output_type == "images":
        # save images
        sample = decode_latent(latent.unsqueeze(0), args, cfg)
        original_name = "" if original_base_names is None else f"_{original_base_names[0]}"
        save_images(sample, args, original_name)


def preprocess_prompts_for_batch(prompt_lines: List[str], base_args: argparse.Namespace) -> List[Dict]:
    """Process multiple prompts for batch mode

    Args:
        prompt_lines: List of prompt lines
        base_args: Base command line arguments

    Returns:
        List[Dict]: List of prompt data dictionaries
    """
    prompts_data = []

    for line in prompt_lines:
        line = line.strip()
        if not line or line.startswith("#"):  # Skip empty lines and comments
            continue

        # Parse prompt line and create override dictionary
        prompt_data = parse_prompt_line(line)
        logger.info(f"Parsed prompt data: {prompt_data}")
        prompts_data.append(prompt_data)

    return prompts_data


def process_batch_prompts(prompts_data: List[Dict], args: argparse.Namespace) -> None:
    """Process multiple prompts with model reuse

    Args:
        prompts_data: List of prompt data dictionaries
        args: Base command line arguments
    """
    if not prompts_data:
        logger.warning("No valid prompts found")
        return

    # 1. Load configuration
    gen_settings = get_generation_settings(args)
    device, cfg, dit_dtype, dit_weight_dtype, vae_dtype = (
        gen_settings.device,
        gen_settings.cfg,
        gen_settings.dit_dtype,
        gen_settings.dit_weight_dtype,
        gen_settings.vae_dtype,
    )
    is_i2v = "i2v" in args.task

    # 2. Encode all prompts
    logger.info("Loading text encoder to encode all prompts")
    text_encoder = load_text_encoder(args, cfg, device)
    text_encoder.model.to(device)

    encoded_contexts = {}

    with torch.no_grad():
        for prompt_data in prompts_data:
            prompt = prompt_data["prompt"]
            prompt_args = apply_overrides(args, prompt_data)
            n_prompt = prompt_data.get(
                "negative_prompt", prompt_args.negative_prompt if prompt_args.negative_prompt else cfg.sample_neg_prompt
            )

            if args.fp8_t5:
                with torch.amp.autocast(device_type=device.type, dtype=cfg.t5_dtype):
                    context = text_encoder([prompt], device)
                    context_null = text_encoder([n_prompt], device)
            else:
                context = text_encoder([prompt], device)
                context_null = text_encoder([n_prompt], device)

            encoded_contexts[prompt] = {"context": context, "context_null": context_null}

    # Free text encoder and clean memory
    del text_encoder
    clean_memory_on_device(device)

    # 3. Process I2V additional encodings if needed
    vae = None
    if is_i2v:
        logger.info("Loading VAE and CLIP for I2V preprocessing")
        vae = load_vae(args, cfg, device, vae_dtype)
        vae.to_device(device)

        clip = load_clip_model(args, cfg, device)
        clip.model.to(device)

        # Process each image and encode with CLIP
        for prompt_data in prompts_data:
            if "image_path" not in prompt_data:
                continue

            prompt_args = apply_overrides(args, prompt_data)
            if not os.path.exists(prompt_args.image_path):
                logger.warning(f"Image path not found: {prompt_args.image_path}")
                continue

            # Load and encode image with CLIP
            img = Image.open(prompt_args.image_path).convert("RGB")
            img_tensor = TF.to_tensor(img).sub_(0.5).div_(0.5).to(device)

            with torch.amp.autocast(device_type=device.type, dtype=torch.float16), torch.no_grad():
                clip_context = clip.visual([img_tensor[:, None, :, :]])

            encoded_contexts[prompt_data["prompt"]]["clip_context"] = clip_context

        # Free CLIP and clean memory
        del clip
        clean_memory_on_device(device)

        # Keep VAE in CPU memory for later use
        vae.to_device("cpu")
    elif cfg.is_fun_control:
        # For Fun-Control, we need VAE but keep it on CPU
        vae = load_vae(args, cfg, device, vae_dtype)
        vae.to_device("cpu")

    # 4. Load DiT model
    logger.info("Loading DiT model")
    model = load_dit_model(args, cfg, device, dit_dtype, dit_weight_dtype, is_i2v)

    # 5. Merge LoRA weights if needed
    if args.lora_weight is not None and len(args.lora_weight) > 0:
        merge_lora_weights(lora_wan, model, args, device)
        if args.save_merged_model:
            logger.info("Model merged and saved. Exiting.")
            return

    # 6. Optimize model
    optimize_model(model, args, device, dit_dtype, dit_weight_dtype)

    # Create shared models dict for generate function
    shared_models = {"vae": vae, "model": model, "encoded_contexts": encoded_contexts}

    # 7. Generate for each prompt
    all_latents = []
    all_prompt_args = []

    for i, prompt_data in enumerate(prompts_data):
        logger.info(f"Processing prompt {i+1}/{len(prompts_data)}: {prompt_data['prompt'][:50]}...")

        # Apply overrides for this prompt
        prompt_args = apply_overrides(args, prompt_data)

        # Generate latent
        latent = generate(prompt_args, gen_settings, shared_models)

        # Save latent if needed
        height, width, _ = check_inputs(prompt_args)
        if prompt_args.output_type == "latent" or prompt_args.output_type == "both":
            save_latent(latent, prompt_args, height, width)

        all_latents.append(latent)
        all_prompt_args.append(prompt_args)

    # 8. Free DiT model
    del model
    clean_memory_on_device(device)
    synchronize_device(device)

    # wait for 5 seconds until block swap is done
    logger.info("Waiting for 5 seconds to finish block swap")
    time.sleep(5)

    gc.collect()
    clean_memory_on_device(device)

    # 9. Decode latents if needed
    if args.output_type != "latent":
        logger.info("Decoding latents to videos/images")

        if vae is None:
            vae = load_vae(args, cfg, device, vae_dtype)

        vae.to_device(device)

        for i, (latent, prompt_args) in enumerate(zip(all_latents, all_prompt_args)):
            logger.info(f"Decoding output {i+1}/{len(all_latents)}")

            # Decode latent
            video = decode_latent(latent.unsqueeze(0), prompt_args, cfg)

            # Save as video or images
            if prompt_args.output_type == "video" or prompt_args.output_type == "both":
                save_video(video, prompt_args)
            elif prompt_args.output_type == "images":
                save_images(video, prompt_args)

        # Free VAE
        del vae

    clean_memory_on_device(device)
    gc.collect()


def process_interactive(args: argparse.Namespace) -> None:
    """Process prompts in interactive mode

    Args:
        args: Base command line arguments
    """
    gen_settings = get_generation_settings(args)
    device, cfg, dit_dtype, dit_weight_dtype, vae_dtype = (
        gen_settings.device,
        gen_settings.cfg,
        gen_settings.dit_dtype,
        gen_settings.dit_weight_dtype,
        gen_settings.vae_dtype,
    )
    is_i2v = "i2v" in args.task

    # Initialize models to None
    text_encoder = None
    vae = None
    model = None
    clip = None

    print("Interactive mode. Enter prompts (Ctrl+D to exit):")

    try:
        while True:
            try:
                line = input("> ")
                if not line.strip():
                    continue

                # Parse prompt
                prompt_data = parse_prompt_line(line)
                prompt_args = apply_overrides(args, prompt_data)

                # Ensure we have all the models we need

                # 1. Load text encoder if not already loaded
                if text_encoder is None:
                    logger.info("Loading text encoder")
                    text_encoder = load_text_encoder(args, cfg, device)

                text_encoder.model.to(device)

                # Encode prompt
                n_prompt = prompt_data.get(
                    "negative_prompt", prompt_args.negative_prompt if prompt_args.negative_prompt else cfg.sample_neg_prompt
                )

                with torch.no_grad():
                    if args.fp8_t5:
                        with torch.amp.autocast(device_type=device.type, dtype=cfg.t5_dtype):
                            context = text_encoder([prompt_data["prompt"]], device)
                            context_null = text_encoder([n_prompt], device)
                    else:
                        context = text_encoder([prompt_data["prompt"]], device)
                        context_null = text_encoder([n_prompt], device)

                encoded_context = {"context": context, "context_null": context_null}

                # Move text encoder to CPU after use
                text_encoder.model.to("cpu")

                # 2. For I2V, we need CLIP and VAE
                if is_i2v:
                    if clip is None:
                        logger.info("Loading CLIP model")
                        clip = load_clip_model(args, cfg, device)

                    clip.model.to(device)

                    # Encode image with CLIP if there's an image path
                    if prompt_args.image_path and os.path.exists(prompt_args.image_path):
                        img = Image.open(prompt_args.image_path).convert("RGB")
                        img_tensor = TF.to_tensor(img).sub_(0.5).div_(0.5).to(device)

                        with torch.amp.autocast(device_type=device.type, dtype=torch.float16), torch.no_grad():
                            clip_context = clip.visual([img_tensor[:, None, :, :]])

                        encoded_context["clip_context"] = clip_context

                    # Move CLIP to CPU after use
                    clip.model.to("cpu")

                    # Load VAE if needed
                    if vae is None:
                        logger.info("Loading VAE model")
                        vae = load_vae(args, cfg, device, vae_dtype)
                elif cfg.is_fun_control and vae is None:
                    # For Fun-Control, we need VAE
                    logger.info("Loading VAE model for Fun-Control")
                    vae = load_vae(args, cfg, device, vae_dtype)

                # 3. Load DiT model if not already loaded
                if model is None:
                    logger.info("Loading DiT model")
                    model = load_dit_model(args, cfg, device, dit_dtype, dit_weight_dtype, is_i2v)

                    # Merge LoRA weights if needed
                    if args.lora_weight is not None and len(args.lora_weight) > 0:
                        merge_lora_weights(lora_wan, model, args, device)

                    # Optimize model
                    optimize_model(model, args, device, dit_dtype, dit_weight_dtype)
                else:
                    # Move model to GPU if it was offloaded
                    model.to(device)

                # Create shared models dict
                shared_models = {"vae": vae, "model": model, "encoded_contexts": {prompt_data["prompt"]: encoded_context}}

                # Generate latent
                latent = generate(prompt_args, gen_settings, shared_models)

                # Move model to CPU after generation
                model.to("cpu")

                # Save latent if needed
                height, width, _ = check_inputs(prompt_args)
                if prompt_args.output_type == "latent" or prompt_args.output_type == "both":
                    save_latent(latent, prompt_args, height, width)

                # Decode and save output
                if prompt_args.output_type != "latent":
                    if vae is None:
                        vae = load_vae(args, cfg, device, vae_dtype)

                    vae.to_device(device)
                    video = decode_latent(latent.unsqueeze(0), prompt_args, cfg)

                    if prompt_args.output_type == "video" or prompt_args.output_type == "both":
                        save_video(video, prompt_args)
                    elif prompt_args.output_type == "images":
                        save_images(video, prompt_args)

                    # Move VAE to CPU after use
                    vae.to_device("cpu")

                clean_memory_on_device(device)

            except KeyboardInterrupt:
                print("\nInterrupted. Continue (Ctrl+D or Ctrl+Z (Windows) to exit)")
                continue

    except EOFError:
        print("\nExiting interactive mode")

    # Clean up all models
    if text_encoder is not None:
        del text_encoder
    if clip is not None:
        del clip
    if vae is not None:
        del vae
    if model is not None:
        del model

    clean_memory_on_device(device)
    gc.collect()


def get_generation_settings(args: argparse.Namespace) -> GenerationSettings:
    device = torch.device(args.device)

    cfg = WAN_CONFIGS[args.task]

    # select dtype
    dit_dtype = detect_wan_sd_dtype(args.dit) if args.dit is not None else torch.bfloat16
    if dit_dtype.itemsize == 1:
        # if weight is in fp8, use bfloat16 for DiT (input/output)
        dit_dtype = torch.bfloat16
        if args.fp8_scaled:
            raise ValueError(
                "DiT weights is already in fp8 format, cannot scale to fp8. Please use fp16/bf16 weights / DiTの重みはすでにfp8形式です。fp8にスケーリングできません。fp16/bf16の重みを使用してください"
            )

    dit_weight_dtype = dit_dtype  # default
    if args.fp8_scaled:
        dit_weight_dtype = None  # various precision weights, so don't cast to specific dtype
    elif args.fp8:
        dit_weight_dtype = torch.float8_e4m3fn

    vae_dtype = str_to_dtype(args.vae_dtype) if args.vae_dtype is not None else dit_dtype
    logger.info(
        f"Using device: {device}, DiT precision: {dit_dtype}, weight precision: {dit_weight_dtype}, VAE precision: {vae_dtype}"
    )

    gen_settings = GenerationSettings(
        device=device,
        cfg=cfg,
        dit_dtype=dit_dtype,
        dit_weight_dtype=dit_weight_dtype,
        vae_dtype=vae_dtype,
    )
    return gen_settings


def main():
    # Parse arguments
    args = parse_args()

    # Check if latents are provided
    latents_mode = args.latent_path is not None and len(args.latent_path) > 0

    # Set device
    device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
    device = torch.device(device)
    logger.info(f"Using device: {device}")
    args.device = device

    if latents_mode:
        # Original latent decode mode
        cfg = WAN_CONFIGS[args.task]  # any task is fine
        original_base_names = []
        latents_list = []
        seeds = []

        assert len(args.latent_path) == 1, "Only one latent path is supported for now"

        for latent_path in args.latent_path:
            original_base_names.append(os.path.splitext(os.path.basename(latent_path))[0])
            seed = 0

            if os.path.splitext(latent_path)[1] != ".safetensors":
                latents = torch.load(latent_path, map_location="cpu")
            else:
                latents = load_file(latent_path)["latent"]
                with safe_open(latent_path, framework="pt") as f:
                    metadata = f.metadata()
                if metadata is None:
                    metadata = {}
                logger.info(f"Loaded metadata: {metadata}")

                if "seeds" in metadata:
                    seed = int(metadata["seeds"])
                if "height" in metadata and "width" in metadata:
                    height = int(metadata["height"])
                    width = int(metadata["width"])
                    args.video_size = [height, width]
                if "video_length" in metadata:
                    args.video_length = int(metadata["video_length"])

            seeds.append(seed)
            latents_list.append(latents)

            logger.info(f"Loaded latent from {latent_path}. Shape: {latents.shape}")

        latent = torch.stack(latents_list, dim=0)  # [N, ...], must be same shape

        height = latents.shape[-2]
        width = latents.shape[-1]
        height *= cfg.patch_size[1] * cfg.vae_stride[1]
        width *= cfg.patch_size[2] * cfg.vae_stride[2]
        video_length = latents.shape[1]
        video_length = (video_length - 1) * cfg.vae_stride[0] + 1
        args.seed = seeds[0]

        # Decode and save
        save_output(latent[0], args, cfg, height, width, original_base_names)

    elif args.from_file:
        # Batch mode from file
        args = setup_args(args)

        # Read prompts from file
        with open(args.from_file, "r", encoding="utf-8") as f:
            prompt_lines = f.readlines()

        # Process prompts
        prompts_data = preprocess_prompts_for_batch(prompt_lines, args)
        process_batch_prompts(prompts_data, args)

    elif args.interactive:
        # Interactive mode
        args = setup_args(args)
        process_interactive(args)

    else:
        # Single prompt mode (original behavior)
        args = setup_args(args)
        height, width, video_length = check_inputs(args)

        logger.info(
            f"Video size: {height}x{width}@{video_length} (HxW@F), fps: {args.fps}, "
            f"infer_steps: {args.infer_steps}, flow_shift: {args.flow_shift}"
        )

        # Generate latent
        gen_settings = get_generation_settings(args)
        latent = generate(args, gen_settings)

        # Make sure the model is freed from GPU memory
        gc.collect()
        clean_memory_on_device(args.device)

        # Save latent and video
        if args.save_merged_model:
            return

        # Add batch dimension
        latent = latent.unsqueeze(0)
        save_output(latent[0], args, WAN_CONFIGS[args.task], height, width)

    logger.info("Done!")


if __name__ == "__main__":
    main()