|
|
|
from typing import Optional |
|
import torch |
|
|
|
try: |
|
import flash_attn_interface |
|
|
|
FLASH_ATTN_3_AVAILABLE = True |
|
except ModuleNotFoundError: |
|
FLASH_ATTN_3_AVAILABLE = False |
|
|
|
try: |
|
import flash_attn |
|
|
|
FLASH_ATTN_2_AVAILABLE = True |
|
except ModuleNotFoundError: |
|
FLASH_ATTN_2_AVAILABLE = False |
|
|
|
try: |
|
import sageattention |
|
|
|
SAGE_ATTN_AVAILABLE = True |
|
except ModuleNotFoundError: |
|
SAGE_ATTN_AVAILABLE = False |
|
|
|
try: |
|
import xformers.ops as xops |
|
|
|
XFORMERS_AVAILABLE = True |
|
except ImportError: |
|
XFORMERS_AVAILABLE = False |
|
|
|
|
|
import warnings |
|
|
|
__all__ = [ |
|
"flash_attention", |
|
"attention", |
|
] |
|
|
|
|
|
def flash_attention( |
|
qkv, |
|
q_lens=None, |
|
k_lens=None, |
|
dropout_p=0.0, |
|
softmax_scale=None, |
|
q_scale=None, |
|
causal=False, |
|
window_size=(-1, -1), |
|
deterministic=False, |
|
dtype=torch.bfloat16, |
|
version=None, |
|
attn_mode: Optional[str] = "torch", |
|
split_attn: bool = False, |
|
): |
|
""" |
|
q: [B, Lq, Nq, C1]. |
|
k: [B, Lk, Nk, C1]. |
|
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. |
|
q_lens: [B]. |
|
k_lens: [B]. |
|
dropout_p: float. Dropout probability. |
|
softmax_scale: float. The scaling of QK^T before applying softmax. |
|
causal: bool. Whether to apply causal attention mask. |
|
window_size: (left right). If not (-1, -1), apply sliding window local attention. |
|
deterministic: bool. If True, slightly slower and uses more memory. |
|
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. |
|
""" |
|
q, k, v = qkv |
|
qkv.clear() |
|
|
|
half_dtypes = (torch.float16, torch.bfloat16) |
|
assert dtype in half_dtypes |
|
|
|
|
|
|
|
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype |
|
|
|
def half(x): |
|
return x if x.dtype in half_dtypes else x.to(dtype) |
|
|
|
|
|
|
|
if attn_mode != "flash3" and attn_mode != "sageattn": |
|
assert q_lens is None, "q_lens is not supported except for flash attention 3." |
|
assert k_lens is None or ( |
|
min(k_lens) == max(k_lens) and k_lens[0] == lk |
|
), "k_lens is not supported except for flash attention 3." |
|
|
|
|
|
if attn_mode == "torch" or attn_mode == "sdpa": |
|
assert not deterministic, "deterministic is not supported in scaled_dot_product_attention." |
|
if q_scale is not None: |
|
q = q * q_scale |
|
q = half(q.transpose(1, 2)) |
|
k = half(k.transpose(1, 2)) |
|
v = half(v.transpose(1, 2)) |
|
|
|
if not split_attn: |
|
q = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, is_causal=causal, dropout_p=dropout_p, scale=softmax_scale |
|
) |
|
x = q |
|
else: |
|
x = torch.empty_like(q) |
|
for i in range(q.size(0)): |
|
x[i : i + 1] = torch.nn.functional.scaled_dot_product_attention( |
|
q[i : i + 1], k[i : i + 1], v[i : i + 1], is_causal=causal, dropout_p=dropout_p, scale=softmax_scale |
|
) |
|
|
|
del q, k, v |
|
x = x.transpose(1, 2).contiguous() |
|
return x.type(out_dtype) |
|
|
|
|
|
if attn_mode == "flash" or attn_mode == "flash2": |
|
if q_scale is not None: |
|
q = q * q_scale |
|
q = half(q) |
|
k = half(k) |
|
v = half(v) |
|
|
|
if not split_attn: |
|
q = flash_attn.flash_attn_func(q, k, v, dropout_p, softmax_scale, causal, window_size, deterministic=deterministic) |
|
x = q |
|
else: |
|
x = torch.empty_like(q) |
|
for i in range(q.size(0)): |
|
x[i : i + 1] = flash_attn.flash_attn_func( |
|
q[i : i + 1], |
|
k[i : i + 1], |
|
v[i : i + 1], |
|
dropout_p, |
|
softmax_scale, |
|
causal, |
|
window_size, |
|
deterministic=deterministic, |
|
) |
|
del q, k, v |
|
return x.type(out_dtype) |
|
|
|
|
|
if attn_mode == "xformers": |
|
assert not deterministic, "deterministic is not supported in xformers." |
|
assert not causal, "causal is not supported in xformers." |
|
if q_scale is not None: |
|
q = q * q_scale |
|
q = half(q) |
|
k = half(k) |
|
v = half(v) |
|
|
|
if not split_attn: |
|
q = xops.memory_efficient_attention(q, k, v, p=dropout_p, scale=softmax_scale) |
|
x = q |
|
else: |
|
x = torch.empty_like(q) |
|
for i in range(q.size(0)): |
|
x[i : i + 1] = xops.memory_efficient_attention( |
|
q[i : i + 1], k[i : i + 1], v[i : i + 1], p=dropout_p, scale=softmax_scale |
|
) |
|
|
|
del q, k, v |
|
return x.type(out_dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assert not split_attn, "split_attn is not supported in flash attention 3 or sage attention." |
|
|
|
|
|
if q_lens is None: |
|
q = half(q.flatten(0, 1)) |
|
q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(device=q.device, non_blocking=True) |
|
else: |
|
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)])) |
|
|
|
|
|
if k_lens is None: |
|
k = half(k.flatten(0, 1)) |
|
v = half(v.flatten(0, 1)) |
|
k_lens = torch.tensor([lk] * b, dtype=torch.int32).to(device=k.device, non_blocking=True) |
|
else: |
|
|
|
if min(k_lens) == max(k_lens) and k.shape[1] == k_lens[0]: |
|
|
|
k = half(k.flatten(0, 1)) |
|
v = half(v.flatten(0, 1)) |
|
else: |
|
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)])) |
|
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)])) |
|
|
|
q = q.to(v.dtype) |
|
k = k.to(v.dtype) |
|
|
|
if q_scale is not None: |
|
q = q * q_scale |
|
|
|
|
|
|
|
|
|
|
|
|
|
if attn_mode == "flash3": |
|
|
|
|
|
x = flash_attn_interface.flash_attn_varlen_func( |
|
q=q, |
|
k=k, |
|
v=v, |
|
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True), |
|
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True), |
|
seqused_q=None, |
|
seqused_k=None, |
|
max_seqlen_q=lq, |
|
max_seqlen_k=lk, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
deterministic=deterministic, |
|
)[0].unflatten(0, (b, lq)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif attn_mode == "sageattn": |
|
|
|
assert not causal, "SAGE attention does not support causal attention." |
|
x = sageattention.sageattn_varlen( |
|
q=q, |
|
k=k, |
|
v=v, |
|
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True), |
|
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True), |
|
max_seqlen_q=lq, |
|
max_seqlen_k=lk, |
|
sm_scale=softmax_scale, |
|
).unflatten(0, (b, lq)) |
|
else: |
|
raise ValueError(f"Unknown attention mode: {attn_mode}") |
|
|
|
|
|
return x.type(out_dtype) |
|
|
|
|
|
def attention( |
|
q, |
|
k, |
|
v, |
|
q_lens=None, |
|
k_lens=None, |
|
dropout_p=0.0, |
|
softmax_scale=None, |
|
q_scale=None, |
|
causal=False, |
|
window_size=(-1, -1), |
|
deterministic=False, |
|
dtype=torch.bfloat16, |
|
fa_version=None, |
|
): |
|
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: |
|
return flash_attention( |
|
q=q, |
|
k=k, |
|
v=v, |
|
q_lens=q_lens, |
|
k_lens=k_lens, |
|
dropout_p=dropout_p, |
|
softmax_scale=softmax_scale, |
|
q_scale=q_scale, |
|
causal=causal, |
|
window_size=window_size, |
|
deterministic=deterministic, |
|
dtype=dtype, |
|
version=fa_version, |
|
) |
|
else: |
|
if q_lens is not None or k_lens is not None: |
|
warnings.warn( |
|
"Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance." |
|
) |
|
attn_mask = None |
|
|
|
q = q.transpose(1, 2).to(dtype) |
|
k = k.transpose(1, 2).to(dtype) |
|
v = v.transpose(1, 2).to(dtype) |
|
|
|
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) |
|
|
|
out = out.transpose(1, 2).contiguous() |
|
return out |
|
|