svjack's picture
Upload folder using huggingface_hub
ef46f0f verified
raw
history blame
10.6 kB
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
from typing import Optional
import torch
try:
import flash_attn_interface
FLASH_ATTN_3_AVAILABLE = True
except ModuleNotFoundError:
FLASH_ATTN_3_AVAILABLE = False
try:
import flash_attn
FLASH_ATTN_2_AVAILABLE = True
except ModuleNotFoundError:
FLASH_ATTN_2_AVAILABLE = False
try:
import sageattention
SAGE_ATTN_AVAILABLE = True
except ModuleNotFoundError:
SAGE_ATTN_AVAILABLE = False
try:
import xformers.ops as xops
XFORMERS_AVAILABLE = True
except ImportError:
XFORMERS_AVAILABLE = False
import warnings
__all__ = [
"flash_attention",
"attention",
]
def flash_attention(
qkv,
q_lens=None,
k_lens=None,
dropout_p=0.0,
softmax_scale=None,
q_scale=None,
causal=False,
window_size=(-1, -1),
deterministic=False,
dtype=torch.bfloat16,
version=None,
attn_mode: Optional[str] = "torch",
split_attn: bool = False,
):
"""
q: [B, Lq, Nq, C1].
k: [B, Lk, Nk, C1].
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk.
q_lens: [B].
k_lens: [B].
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
causal: bool. Whether to apply causal attention mask.
window_size: (left right). If not (-1, -1), apply sliding window local attention.
deterministic: bool. If True, slightly slower and uses more memory.
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
"""
q, k, v = qkv
qkv.clear()
half_dtypes = (torch.float16, torch.bfloat16)
assert dtype in half_dtypes
# assert q.device.type == "cuda" and q.size(-1) <= 256
# params
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
def half(x):
return x if x.dtype in half_dtypes else x.to(dtype)
# We cannot test Flash attention 3 in musubi tuner, so keep the original code.
# Customized code (except for flash attention 3) is not supported q_lens and k_lens.
if attn_mode != "flash3" and attn_mode != "sageattn":
assert q_lens is None, "q_lens is not supported except for flash attention 3."
assert k_lens is None or (
min(k_lens) == max(k_lens) and k_lens[0] == lk
), "k_lens is not supported except for flash attention 3."
# SDPA
if attn_mode == "torch" or attn_mode == "sdpa":
assert not deterministic, "deterministic is not supported in scaled_dot_product_attention."
if q_scale is not None:
q = q * q_scale
q = half(q.transpose(1, 2))
k = half(k.transpose(1, 2))
v = half(v.transpose(1, 2))
if not split_attn:
q = torch.nn.functional.scaled_dot_product_attention(
q, k, v, is_causal=causal, dropout_p=dropout_p, scale=softmax_scale
)
x = q
else:
x = torch.empty_like(q)
for i in range(q.size(0)):
x[i : i + 1] = torch.nn.functional.scaled_dot_product_attention(
q[i : i + 1], k[i : i + 1], v[i : i + 1], is_causal=causal, dropout_p=dropout_p, scale=softmax_scale
)
del q, k, v
x = x.transpose(1, 2).contiguous()
return x.type(out_dtype)
# flash attention 2
if attn_mode == "flash" or attn_mode == "flash2":
if q_scale is not None:
q = q * q_scale
q = half(q)
k = half(k)
v = half(v)
if not split_attn:
q = flash_attn.flash_attn_func(q, k, v, dropout_p, softmax_scale, causal, window_size, deterministic=deterministic)
x = q
else:
x = torch.empty_like(q)
for i in range(q.size(0)):
x[i : i + 1] = flash_attn.flash_attn_func(
q[i : i + 1],
k[i : i + 1],
v[i : i + 1],
dropout_p,
softmax_scale,
causal,
window_size,
deterministic=deterministic,
)
del q, k, v
return x.type(out_dtype)
# xformers
if attn_mode == "xformers":
assert not deterministic, "deterministic is not supported in xformers."
assert not causal, "causal is not supported in xformers."
if q_scale is not None:
q = q * q_scale
q = half(q)
k = half(k)
v = half(v)
if not split_attn:
q = xops.memory_efficient_attention(q, k, v, p=dropout_p, scale=softmax_scale)
x = q
else:
x = torch.empty_like(q)
for i in range(q.size(0)):
x[i : i + 1] = xops.memory_efficient_attention(
q[i : i + 1], k[i : i + 1], v[i : i + 1], p=dropout_p, scale=softmax_scale
)
del q, k, v
return x.type(out_dtype)
# sage attention with fixed length seems to cause NaN in I2V inference.
# # sage attention
# if attn_mode == "sageattn":
# print("Using sage attention")
# assert not deterministic, "deterministic is not supported in sage attention."
# if q_scale is not None:
# q = q * q_scale
# q, k, v = half(q), half(k), half(v)
# x = sageattention.sageattn(q, k, v, "NHD", is_causal=causal, sm_scale=softmax_scale)
# del q, k, v
# return x.type(out_dtype)
assert not split_attn, "split_attn is not supported in flash attention 3 or sage attention."
# preprocess query: in Wan 2.1, q_lens is always None.
if q_lens is None:
q = half(q.flatten(0, 1))
q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(device=q.device, non_blocking=True)
else:
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
# preprocess key, value
if k_lens is None:
k = half(k.flatten(0, 1))
v = half(v.flatten(0, 1))
k_lens = torch.tensor([lk] * b, dtype=torch.int32).to(device=k.device, non_blocking=True)
else:
# Note: in Wan 2.1, all k_lens are same if we have same image size in the batch.
if min(k_lens) == max(k_lens) and k.shape[1] == k_lens[0]:
# B, L, N, C -> BN, L, C
k = half(k.flatten(0, 1))
v = half(v.flatten(0, 1))
else:
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
q = q.to(v.dtype)
k = k.to(v.dtype)
if q_scale is not None:
q = q * q_scale
# if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
# warnings.warn("Flash attention 3 is not available, use flash attention 2 instead.")
# apply attention
# if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
if attn_mode == "flash3":
# Not tested yet in musubi tuner.
# Note: dropout_p, window_size are not supported in FA3 now.
x = flash_attn_interface.flash_attn_varlen_func(
q=q,
k=k,
v=v,
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
seqused_q=None,
seqused_k=None,
max_seqlen_q=lq,
max_seqlen_k=lk,
softmax_scale=softmax_scale,
causal=causal,
deterministic=deterministic,
)[0].unflatten(0, (b, lq))
# elif (version is None or version == 2) and FLASH_ATTN_2_AVAILABLE:
# # assert FLASH_ATTN_2_AVAILABLE
# x = flash_attn.flash_attn_varlen_func(
# q=q,
# k=k,
# v=v,
# cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
# cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
# max_seqlen_q=lq,
# max_seqlen_k=lk,
# dropout_p=dropout_p,
# softmax_scale=softmax_scale,
# causal=causal,
# window_size=window_size,
# deterministic=deterministic,
# ).unflatten(0, (b, lq))
# elif version is None and SAGE_ATTN_AVAILABLE:
elif attn_mode == "sageattn":
# print("Using sage attention")
assert not causal, "SAGE attention does not support causal attention."
x = sageattention.sageattn_varlen(
q=q,
k=k,
v=v,
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q.device, non_blocking=True),
max_seqlen_q=lq,
max_seqlen_k=lk,
sm_scale=softmax_scale,
).unflatten(0, (b, lq))
else:
raise ValueError(f"Unknown attention mode: {attn_mode}")
# output
return x.type(out_dtype)
def attention(
q,
k,
v,
q_lens=None,
k_lens=None,
dropout_p=0.0,
softmax_scale=None,
q_scale=None,
causal=False,
window_size=(-1, -1),
deterministic=False,
dtype=torch.bfloat16,
fa_version=None,
):
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
return flash_attention(
q=q,
k=k,
v=v,
q_lens=q_lens,
k_lens=k_lens,
dropout_p=dropout_p,
softmax_scale=softmax_scale,
q_scale=q_scale,
causal=causal,
window_size=window_size,
deterministic=deterministic,
dtype=dtype,
version=fa_version,
)
else:
if q_lens is not None or k_lens is not None:
warnings.warn(
"Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance."
)
attn_mask = None
q = q.transpose(1, 2).to(dtype)
k = k.transpose(1, 2).to(dtype)
v = v.transpose(1, 2).to(dtype)
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
out = out.transpose(1, 2).contiguous()
return out