|
|
|
|
|
|
|
import math |
|
import os |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .tokenizers import HuggingfaceTokenizer |
|
from accelerate import init_empty_weights |
|
from safetensors.torch import load_file |
|
|
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
logging.basicConfig(level=logging.INFO) |
|
|
|
__all__ = [ |
|
"T5Model", |
|
"T5Encoder", |
|
"T5Decoder", |
|
"T5EncoderModel", |
|
] |
|
|
|
|
|
def fp16_clamp(x): |
|
if x.dtype == torch.float16 and torch.isinf(x).any(): |
|
clamp = torch.finfo(x.dtype).max - 1000 |
|
x = torch.clamp(x, min=-clamp, max=clamp) |
|
return x |
|
|
|
|
|
def init_weights(m): |
|
if isinstance(m, T5LayerNorm): |
|
nn.init.ones_(m.weight) |
|
elif isinstance(m, T5Model): |
|
nn.init.normal_(m.token_embedding.weight, std=1.0) |
|
elif isinstance(m, T5FeedForward): |
|
nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5) |
|
nn.init.normal_(m.fc1.weight, std=m.dim**-0.5) |
|
nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5) |
|
elif isinstance(m, T5Attention): |
|
nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn) ** -0.5) |
|
nn.init.normal_(m.k.weight, std=m.dim**-0.5) |
|
nn.init.normal_(m.v.weight, std=m.dim**-0.5) |
|
nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn) ** -0.5) |
|
elif isinstance(m, T5RelativeEmbedding): |
|
nn.init.normal_(m.embedding.weight, std=(2 * m.num_buckets * m.num_heads) ** -0.5) |
|
|
|
|
|
class GELU(nn.Module): |
|
|
|
def forward(self, x): |
|
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0)))) |
|
|
|
|
|
class T5LayerNorm(nn.Module): |
|
|
|
def __init__(self, dim, eps=1e-6): |
|
super(T5LayerNorm, self).__init__() |
|
self.dim = dim |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) + self.eps) |
|
if self.weight.dtype in [torch.float16, torch.bfloat16]: |
|
x = x.type_as(self.weight) |
|
return self.weight * x |
|
|
|
|
|
class T5Attention(nn.Module): |
|
|
|
def __init__(self, dim, dim_attn, num_heads, dropout=0.1): |
|
assert dim_attn % num_heads == 0 |
|
super(T5Attention, self).__init__() |
|
self.dim = dim |
|
self.dim_attn = dim_attn |
|
self.num_heads = num_heads |
|
self.head_dim = dim_attn // num_heads |
|
|
|
|
|
self.q = nn.Linear(dim, dim_attn, bias=False) |
|
self.k = nn.Linear(dim, dim_attn, bias=False) |
|
self.v = nn.Linear(dim, dim_attn, bias=False) |
|
self.o = nn.Linear(dim_attn, dim, bias=False) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x, context=None, mask=None, pos_bias=None): |
|
""" |
|
x: [B, L1, C]. |
|
context: [B, L2, C] or None. |
|
mask: [B, L2] or [B, L1, L2] or None. |
|
""" |
|
|
|
context = x if context is None else context |
|
b, n, c = x.size(0), self.num_heads, self.head_dim |
|
|
|
|
|
q = self.q(x).view(b, -1, n, c) |
|
k = self.k(context).view(b, -1, n, c) |
|
v = self.v(context).view(b, -1, n, c) |
|
|
|
|
|
attn_bias = x.new_zeros(b, n, q.size(1), k.size(1)) |
|
if pos_bias is not None: |
|
attn_bias += pos_bias |
|
if mask is not None: |
|
assert mask.ndim in [2, 3] |
|
mask = mask.view(b, 1, 1, -1) if mask.ndim == 2 else mask.unsqueeze(1) |
|
attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min) |
|
|
|
|
|
attn = torch.einsum("binc,bjnc->bnij", q, k) + attn_bias |
|
attn = F.softmax(attn.float(), dim=-1).type_as(attn) |
|
x = torch.einsum("bnij,bjnc->binc", attn, v) |
|
|
|
|
|
x = x.reshape(b, -1, n * c) |
|
x = self.o(x) |
|
x = self.dropout(x) |
|
return x |
|
|
|
|
|
class T5FeedForward(nn.Module): |
|
|
|
def __init__(self, dim, dim_ffn, dropout=0.1): |
|
super(T5FeedForward, self).__init__() |
|
self.dim = dim |
|
self.dim_ffn = dim_ffn |
|
|
|
|
|
self.gate = nn.Sequential(nn.Linear(dim, dim_ffn, bias=False), GELU()) |
|
self.fc1 = nn.Linear(dim, dim_ffn, bias=False) |
|
self.fc2 = nn.Linear(dim_ffn, dim, bias=False) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) * self.gate(x) |
|
x = self.dropout(x) |
|
x = self.fc2(x) |
|
x = self.dropout(x) |
|
return x |
|
|
|
|
|
class T5SelfAttention(nn.Module): |
|
|
|
def __init__(self, dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos=True, dropout=0.1): |
|
super(T5SelfAttention, self).__init__() |
|
self.dim = dim |
|
self.dim_attn = dim_attn |
|
self.dim_ffn = dim_ffn |
|
self.num_heads = num_heads |
|
self.num_buckets = num_buckets |
|
self.shared_pos = shared_pos |
|
|
|
|
|
self.norm1 = T5LayerNorm(dim) |
|
self.attn = T5Attention(dim, dim_attn, num_heads, dropout) |
|
self.norm2 = T5LayerNorm(dim) |
|
self.ffn = T5FeedForward(dim, dim_ffn, dropout) |
|
self.pos_embedding = None if shared_pos else T5RelativeEmbedding(num_buckets, num_heads, bidirectional=True) |
|
|
|
def forward(self, x, mask=None, pos_bias=None): |
|
e = pos_bias if self.shared_pos else self.pos_embedding(x.size(1), x.size(1)) |
|
x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e)) |
|
x = fp16_clamp(x + self.ffn(self.norm2(x))) |
|
return x |
|
|
|
|
|
class T5CrossAttention(nn.Module): |
|
|
|
def __init__(self, dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos=True, dropout=0.1): |
|
super(T5CrossAttention, self).__init__() |
|
self.dim = dim |
|
self.dim_attn = dim_attn |
|
self.dim_ffn = dim_ffn |
|
self.num_heads = num_heads |
|
self.num_buckets = num_buckets |
|
self.shared_pos = shared_pos |
|
|
|
|
|
self.norm1 = T5LayerNorm(dim) |
|
self.self_attn = T5Attention(dim, dim_attn, num_heads, dropout) |
|
self.norm2 = T5LayerNorm(dim) |
|
self.cross_attn = T5Attention(dim, dim_attn, num_heads, dropout) |
|
self.norm3 = T5LayerNorm(dim) |
|
self.ffn = T5FeedForward(dim, dim_ffn, dropout) |
|
self.pos_embedding = None if shared_pos else T5RelativeEmbedding(num_buckets, num_heads, bidirectional=False) |
|
|
|
def forward(self, x, mask=None, encoder_states=None, encoder_mask=None, pos_bias=None): |
|
e = pos_bias if self.shared_pos else self.pos_embedding(x.size(1), x.size(1)) |
|
x = fp16_clamp(x + self.self_attn(self.norm1(x), mask=mask, pos_bias=e)) |
|
x = fp16_clamp(x + self.cross_attn(self.norm2(x), context=encoder_states, mask=encoder_mask)) |
|
x = fp16_clamp(x + self.ffn(self.norm3(x))) |
|
return x |
|
|
|
|
|
class T5RelativeEmbedding(nn.Module): |
|
|
|
def __init__(self, num_buckets, num_heads, bidirectional, max_dist=128): |
|
super(T5RelativeEmbedding, self).__init__() |
|
self.num_buckets = num_buckets |
|
self.num_heads = num_heads |
|
self.bidirectional = bidirectional |
|
self.max_dist = max_dist |
|
|
|
|
|
self.embedding = nn.Embedding(num_buckets, num_heads) |
|
|
|
def forward(self, lq, lk): |
|
device = self.embedding.weight.device |
|
|
|
|
|
rel_pos = torch.arange(lk, device=device).unsqueeze(0) - torch.arange(lq, device=device).unsqueeze(1) |
|
rel_pos = self._relative_position_bucket(rel_pos) |
|
rel_pos_embeds = self.embedding(rel_pos) |
|
rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(0) |
|
return rel_pos_embeds.contiguous() |
|
|
|
def _relative_position_bucket(self, rel_pos): |
|
|
|
if self.bidirectional: |
|
num_buckets = self.num_buckets // 2 |
|
rel_buckets = (rel_pos > 0).long() * num_buckets |
|
rel_pos = torch.abs(rel_pos) |
|
else: |
|
num_buckets = self.num_buckets |
|
rel_buckets = 0 |
|
rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos)) |
|
|
|
|
|
max_exact = num_buckets // 2 |
|
rel_pos_large = ( |
|
max_exact |
|
+ (torch.log(rel_pos.float() / max_exact) / math.log(self.max_dist / max_exact) * (num_buckets - max_exact)).long() |
|
) |
|
rel_pos_large = torch.min(rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1)) |
|
rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large) |
|
return rel_buckets |
|
|
|
|
|
class T5Encoder(nn.Module): |
|
|
|
def __init__(self, vocab, dim, dim_attn, dim_ffn, num_heads, num_layers, num_buckets, shared_pos=True, dropout=0.1): |
|
super(T5Encoder, self).__init__() |
|
self.dim = dim |
|
self.dim_attn = dim_attn |
|
self.dim_ffn = dim_ffn |
|
self.num_heads = num_heads |
|
self.num_layers = num_layers |
|
self.num_buckets = num_buckets |
|
self.shared_pos = shared_pos |
|
|
|
|
|
self.token_embedding = vocab if isinstance(vocab, nn.Embedding) else nn.Embedding(vocab, dim) |
|
self.pos_embedding = T5RelativeEmbedding(num_buckets, num_heads, bidirectional=True) if shared_pos else None |
|
self.dropout = nn.Dropout(dropout) |
|
self.blocks = nn.ModuleList( |
|
[T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos, dropout) for _ in range(num_layers)] |
|
) |
|
self.norm = T5LayerNorm(dim) |
|
|
|
|
|
self.apply(init_weights) |
|
|
|
def prepare_fp8(self, target_dtype=torch.bfloat16): |
|
def forward_hook(module): |
|
def forward(hidden_states): |
|
hidden_gelu = module.act(module.wi_0(hidden_states)) |
|
hidden_linear = module.wi_1(hidden_states) |
|
hidden_states = hidden_gelu * hidden_linear |
|
hidden_states = module.dropout(hidden_states) |
|
|
|
hidden_states = module.wo(hidden_states) |
|
return hidden_states |
|
|
|
return forward |
|
|
|
for module in self.modules(): |
|
if module.__class__.__name__ in ["T5LayerNorm", "Embedding"]: |
|
|
|
module.to(target_dtype) |
|
if module.__class__.__name__ in ["T5DenseGatedActDense"]: |
|
|
|
module.forward = forward_hook(module) |
|
|
|
def forward(self, ids, mask=None): |
|
x = self.token_embedding(ids) |
|
x = self.dropout(x) |
|
e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None |
|
for block in self.blocks: |
|
x = block(x, mask, pos_bias=e) |
|
x = self.norm(x) |
|
x = self.dropout(x) |
|
return x |
|
|
|
|
|
class T5Decoder(nn.Module): |
|
|
|
def __init__(self, vocab, dim, dim_attn, dim_ffn, num_heads, num_layers, num_buckets, shared_pos=True, dropout=0.1): |
|
super(T5Decoder, self).__init__() |
|
self.dim = dim |
|
self.dim_attn = dim_attn |
|
self.dim_ffn = dim_ffn |
|
self.num_heads = num_heads |
|
self.num_layers = num_layers |
|
self.num_buckets = num_buckets |
|
self.shared_pos = shared_pos |
|
|
|
|
|
self.token_embedding = vocab if isinstance(vocab, nn.Embedding) else nn.Embedding(vocab, dim) |
|
self.pos_embedding = T5RelativeEmbedding(num_buckets, num_heads, bidirectional=False) if shared_pos else None |
|
self.dropout = nn.Dropout(dropout) |
|
self.blocks = nn.ModuleList( |
|
[T5CrossAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos, dropout) for _ in range(num_layers)] |
|
) |
|
self.norm = T5LayerNorm(dim) |
|
|
|
|
|
self.apply(init_weights) |
|
|
|
def forward(self, ids, mask=None, encoder_states=None, encoder_mask=None): |
|
b, s = ids.size() |
|
|
|
|
|
if mask is None: |
|
mask = torch.tril(torch.ones(1, s, s).to(ids.device)) |
|
elif mask.ndim == 2: |
|
mask = torch.tril(mask.unsqueeze(1).expand(-1, s, -1)) |
|
|
|
|
|
x = self.token_embedding(ids) |
|
x = self.dropout(x) |
|
e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None |
|
for block in self.blocks: |
|
x = block(x, mask, encoder_states, encoder_mask, pos_bias=e) |
|
x = self.norm(x) |
|
x = self.dropout(x) |
|
return x |
|
|
|
|
|
class T5Model(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
vocab_size, |
|
dim, |
|
dim_attn, |
|
dim_ffn, |
|
num_heads, |
|
encoder_layers, |
|
decoder_layers, |
|
num_buckets, |
|
shared_pos=True, |
|
dropout=0.1, |
|
): |
|
super(T5Model, self).__init__() |
|
self.vocab_size = vocab_size |
|
self.dim = dim |
|
self.dim_attn = dim_attn |
|
self.dim_ffn = dim_ffn |
|
self.num_heads = num_heads |
|
self.encoder_layers = encoder_layers |
|
self.decoder_layers = decoder_layers |
|
self.num_buckets = num_buckets |
|
|
|
|
|
self.token_embedding = nn.Embedding(vocab_size, dim) |
|
self.encoder = T5Encoder( |
|
self.token_embedding, dim, dim_attn, dim_ffn, num_heads, encoder_layers, num_buckets, shared_pos, dropout |
|
) |
|
self.decoder = T5Decoder( |
|
self.token_embedding, dim, dim_attn, dim_ffn, num_heads, decoder_layers, num_buckets, shared_pos, dropout |
|
) |
|
self.head = nn.Linear(dim, vocab_size, bias=False) |
|
|
|
|
|
self.apply(init_weights) |
|
|
|
def forward(self, encoder_ids, encoder_mask, decoder_ids, decoder_mask): |
|
x = self.encoder(encoder_ids, encoder_mask) |
|
x = self.decoder(decoder_ids, decoder_mask, x, encoder_mask) |
|
x = self.head(x) |
|
return x |
|
|
|
|
|
def _t5( |
|
name, |
|
encoder_only=False, |
|
decoder_only=False, |
|
return_tokenizer=False, |
|
tokenizer_kwargs={}, |
|
**kwargs, |
|
): |
|
|
|
|
|
|
|
assert not (encoder_only and decoder_only) |
|
|
|
|
|
if encoder_only: |
|
model_cls = T5Encoder |
|
kwargs["vocab"] = kwargs.pop("vocab_size") |
|
kwargs["num_layers"] = kwargs.pop("encoder_layers") |
|
_ = kwargs.pop("decoder_layers") |
|
elif decoder_only: |
|
model_cls = T5Decoder |
|
kwargs["vocab"] = kwargs.pop("vocab_size") |
|
kwargs["num_layers"] = kwargs.pop("decoder_layers") |
|
_ = kwargs.pop("encoder_layers") |
|
else: |
|
model_cls = T5Model |
|
|
|
|
|
|
|
model = model_cls(**kwargs) |
|
|
|
|
|
|
|
|
|
|
|
if return_tokenizer: |
|
from .tokenizers import HuggingfaceTokenizer |
|
|
|
tokenizer = HuggingfaceTokenizer(f"google/{name}", **tokenizer_kwargs) |
|
return model, tokenizer |
|
else: |
|
return model |
|
|
|
|
|
def umt5_xxl(**kwargs): |
|
cfg = dict( |
|
vocab_size=256384, |
|
dim=4096, |
|
dim_attn=4096, |
|
dim_ffn=10240, |
|
num_heads=64, |
|
encoder_layers=24, |
|
decoder_layers=24, |
|
num_buckets=32, |
|
shared_pos=False, |
|
dropout=0.1, |
|
) |
|
cfg.update(**kwargs) |
|
return _t5("umt5-xxl", **cfg) |
|
|
|
|
|
class T5EncoderModel: |
|
|
|
def __init__( |
|
self, |
|
text_len, |
|
dtype=torch.bfloat16, |
|
device=torch.cuda.current_device(), |
|
checkpoint_path=None, |
|
tokenizer_path=None, |
|
shard_fn=None, |
|
weight_path=None, |
|
fp8=False, |
|
): |
|
self.text_len = text_len |
|
self.dtype = dtype if not fp8 else torch.float8_e4m3fn |
|
self.device = device |
|
self.checkpoint_path = checkpoint_path |
|
self.tokenizer_path = tokenizer_path |
|
|
|
|
|
with init_empty_weights(): |
|
model = umt5_xxl(encoder_only=True, return_tokenizer=False) |
|
|
|
model = model.eval().requires_grad_(False) |
|
if checkpoint_path is not None: |
|
logger.info(f"loading {checkpoint_path}") |
|
model.load_state_dict(torch.load(checkpoint_path, map_location="cpu")) |
|
else: |
|
logger.info(f"loading weights from {weight_path}") |
|
if os.path.splitext(weight_path)[1] == ".safetensors": |
|
sd = load_file(weight_path) |
|
else: |
|
sd = torch.load(weight_path, map_location="cpu", weights_only=True) |
|
|
|
sd = {k.replace("encoder.", ""): v for k, v in sd.items()} |
|
model.load_state_dict(sd, strict=True, assign=True) |
|
|
|
logger.info(f"moving model to {device} and casting to {self.dtype}") |
|
model = model.to(device, dtype=self.dtype) |
|
|
|
if fp8: |
|
logger.info("preparing model for fp8") |
|
model.prepare_fp8(dtype) |
|
|
|
self.model = model |
|
|
|
|
|
|
|
|
|
|
|
if tokenizer_path is None: |
|
tokenizer_path = "Wan-AI/Wan2.1-T2V-14B" |
|
subfolder = "google/umt5-xxl" |
|
else: |
|
subfolder = None |
|
self.tokenizer = HuggingfaceTokenizer(name=tokenizer_path, seq_len=text_len, clean="whitespace", subfolder=subfolder) |
|
|
|
def __call__(self, texts, device): |
|
ids, mask = self.tokenizer(texts, return_mask=True, add_special_tokens=True) |
|
ids = ids.to(device) |
|
mask = mask.to(device) |
|
seq_lens = mask.gt(0).sum(dim=1).long() |
|
context = self.model(ids, mask) |
|
return [u[:v] for u, v in zip(context, seq_lens)] |
|
|