YiChen_FramePack_lora_early / cache_latents.py
svjack's picture
Upload folder using huggingface_hub
ef46f0f verified
raw
history blame
13.5 kB
import argparse
import os
import glob
from typing import Optional, Union
import numpy as np
import torch
from tqdm import tqdm
from dataset import config_utils
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
from PIL import Image
import logging
from dataset.image_video_dataset import BaseDataset, ItemInfo, save_latent_cache, ARCHITECTURE_HUNYUAN_VIDEO
from hunyuan_model.vae import load_vae
from hunyuan_model.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
from utils.model_utils import str_to_dtype
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def show_image(image: Union[list[Union[Image.Image, np.ndarray], Union[Image.Image, np.ndarray]]]) -> int:
import cv2
imgs = (
[image]
if (isinstance(image, np.ndarray) and len(image.shape) == 3) or isinstance(image, Image.Image)
else [image[0], image[-1]]
)
if len(imgs) > 1:
print(f"Number of images: {len(image)}")
for i, img in enumerate(imgs):
if len(imgs) > 1:
print(f"{'First' if i == 0 else 'Last'} image: {img.shape}")
else:
print(f"Image: {img.shape}")
cv2_img = np.array(img) if isinstance(img, Image.Image) else img
cv2_img = cv2.cvtColor(cv2_img, cv2.COLOR_RGB2BGR)
cv2.imshow("image", cv2_img)
k = cv2.waitKey(0)
cv2.destroyAllWindows()
if k == ord("q") or k == ord("d"):
return k
return k
def show_console(
image: Union[list[Union[Image.Image, np.ndarray], Union[Image.Image, np.ndarray]]],
width: int,
back: str,
interactive: bool = False,
) -> int:
from ascii_magic import from_pillow_image, Back
back = None
if back is not None:
back = getattr(Back, back.upper())
k = None
imgs = (
[image]
if (isinstance(image, np.ndarray) and len(image.shape) == 3) or isinstance(image, Image.Image)
else [image[0], image[-1]]
)
if len(imgs) > 1:
print(f"Number of images: {len(image)}")
for i, img in enumerate(imgs):
if len(imgs) > 1:
print(f"{'First' if i == 0 else 'Last'} image: {img.shape}")
else:
print(f"Image: {img.shape}")
pil_img = img if isinstance(img, Image.Image) else Image.fromarray(img)
ascii_img = from_pillow_image(pil_img)
ascii_img.to_terminal(columns=width, back=back)
if interactive:
k = input("Press q to quit, d to next dataset, other key to next: ")
if k == "q" or k == "d":
return ord(k)
if not interactive:
return ord(" ")
return ord(k) if k else ord(" ")
def save_video(image: Union[list[Union[Image.Image, np.ndarray], Union[Image.Image, np.ndarray]]], cache_path: str, fps: int = 24):
import av
directory = os.path.dirname(cache_path)
if not os.path.exists(directory):
os.makedirs(directory)
if (isinstance(image, np.ndarray) and len(image.shape) == 3) or isinstance(image, Image.Image):
# save image
image_path = cache_path.replace(".safetensors", ".jpg")
img = image if isinstance(image, Image.Image) else Image.fromarray(image)
img.save(image_path)
print(f"Saved image: {image_path}")
else:
imgs = image
print(f"Number of images: {len(imgs)}")
# save video
video_path = cache_path.replace(".safetensors", ".mp4")
height, width = imgs[0].shape[0:2]
# create output container
container = av.open(video_path, mode="w")
# create video stream
codec = "libx264"
pixel_format = "yuv420p"
stream = container.add_stream(codec, rate=fps)
stream.width = width
stream.height = height
stream.pix_fmt = pixel_format
stream.bit_rate = 1000000 # 1Mbit/s for preview quality
for frame_img in imgs:
if isinstance(frame_img, Image.Image):
frame = av.VideoFrame.from_image(frame_img)
else:
frame = av.VideoFrame.from_ndarray(frame_img, format="rgb24")
packets = stream.encode(frame)
for packet in packets:
container.mux(packet)
for packet in stream.encode():
container.mux(packet)
container.close()
print(f"Saved video: {video_path}")
def show_datasets(
datasets: list[BaseDataset],
debug_mode: str,
console_width: int,
console_back: str,
console_num_images: Optional[int],
fps: int = 24,
):
if debug_mode != "video":
print(f"d: next dataset, q: quit")
num_workers = max(1, os.cpu_count() - 1)
for i, dataset in enumerate(datasets):
print(f"Dataset [{i}]")
batch_index = 0
num_images_to_show = console_num_images
k = None
for key, batch in dataset.retrieve_latent_cache_batches(num_workers):
print(f"bucket resolution: {key}, count: {len(batch)}")
for j, item_info in enumerate(batch):
item_info: ItemInfo
print(f"{batch_index}-{j}: {item_info}")
if debug_mode == "image":
k = show_image(item_info.content)
elif debug_mode == "console":
k = show_console(item_info.content, console_width, console_back, console_num_images is None)
if num_images_to_show is not None:
num_images_to_show -= 1
if num_images_to_show == 0:
k = ord("d") # next dataset
elif debug_mode == "video":
save_video(item_info.content, item_info.latent_cache_path, fps)
k = None # save next video
if k == ord("q"):
return
elif k == ord("d"):
break
if k == ord("d"):
break
batch_index += 1
def encode_and_save_batch(vae: AutoencoderKLCausal3D, batch: list[ItemInfo]):
contents = torch.stack([torch.from_numpy(item.content) for item in batch])
if len(contents.shape) == 4:
contents = contents.unsqueeze(1) # B, H, W, C -> B, F, H, W, C
contents = contents.permute(0, 4, 1, 2, 3).contiguous() # B, C, F, H, W
contents = contents.to(vae.device, dtype=vae.dtype)
contents = contents / 127.5 - 1.0 # normalize to [-1, 1]
h, w = contents.shape[3], contents.shape[4]
if h < 8 or w < 8:
item = batch[0] # other items should have the same size
raise ValueError(f"Image or video size too small: {item.item_key} and {len(batch) - 1} more, size: {item.original_size}")
# print(f"encode batch: {contents.shape}")
with torch.no_grad():
latent = vae.encode(contents).latent_dist.sample()
# latent = latent * vae.config.scaling_factor
# # debug: decode and save
# with torch.no_grad():
# latent_to_decode = latent / vae.config.scaling_factor
# images = vae.decode(latent_to_decode, return_dict=False)[0]
# images = (images / 2 + 0.5).clamp(0, 1)
# images = images.cpu().float().numpy()
# images = (images * 255).astype(np.uint8)
# images = images.transpose(0, 2, 3, 4, 1) # B, C, F, H, W -> B, F, H, W, C
# for b in range(images.shape[0]):
# for f in range(images.shape[1]):
# fln = os.path.splitext(os.path.basename(batch[b].item_key))[0]
# img = Image.fromarray(images[b, f])
# img.save(f"./logs/decode_{fln}_{b}_{f:03d}.jpg")
for item, l in zip(batch, latent):
# print(f"save latent cache: {item.latent_cache_path}, latent shape: {l.shape}")
save_latent_cache(item, l)
def encode_datasets(datasets: list[BaseDataset], encode: callable, args: argparse.Namespace):
num_workers = args.num_workers if args.num_workers is not None else max(1, os.cpu_count() - 1)
for i, dataset in enumerate(datasets):
logger.info(f"Encoding dataset [{i}]")
all_latent_cache_paths = []
for _, batch in tqdm(dataset.retrieve_latent_cache_batches(num_workers)):
all_latent_cache_paths.extend([item.latent_cache_path for item in batch])
if args.skip_existing:
filtered_batch = [item for item in batch if not os.path.exists(item.latent_cache_path)]
if len(filtered_batch) == 0:
continue
batch = filtered_batch
bs = args.batch_size if args.batch_size is not None else len(batch)
for i in range(0, len(batch), bs):
encode(batch[i : i + bs])
# normalize paths
all_latent_cache_paths = [os.path.normpath(p) for p in all_latent_cache_paths]
all_latent_cache_paths = set(all_latent_cache_paths)
# remove old cache files not in the dataset
all_cache_files = dataset.get_all_latent_cache_files()
for cache_file in all_cache_files:
if os.path.normpath(cache_file) not in all_latent_cache_paths:
if args.keep_cache:
logger.info(f"Keep cache file not in the dataset: {cache_file}")
else:
os.remove(cache_file)
logger.info(f"Removed old cache file: {cache_file}")
def main(args):
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
# Load dataset config
blueprint_generator = BlueprintGenerator(ConfigSanitizer())
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_utils.load_user_config(args.dataset_config)
blueprint = blueprint_generator.generate(user_config, args, architecture=ARCHITECTURE_HUNYUAN_VIDEO)
train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group)
datasets = train_dataset_group.datasets
if args.debug_mode is not None:
show_datasets(datasets, args.debug_mode, args.console_width, args.console_back, args.console_num_images)
return
assert args.vae is not None, "vae checkpoint is required"
# Load VAE model: HunyuanVideo VAE model is float16
vae_dtype = torch.float16 if args.vae_dtype is None else str_to_dtype(args.vae_dtype)
vae, _, s_ratio, t_ratio = load_vae(vae_dtype=vae_dtype, device=device, vae_path=args.vae)
vae.eval()
logger.info(f"Loaded VAE: {vae.config}, dtype: {vae.dtype}")
if args.vae_chunk_size is not None:
vae.set_chunk_size_for_causal_conv_3d(args.vae_chunk_size)
logger.info(f"Set chunk_size to {args.vae_chunk_size} for CausalConv3d in VAE")
if args.vae_spatial_tile_sample_min_size is not None:
vae.enable_spatial_tiling(True)
vae.tile_sample_min_size = args.vae_spatial_tile_sample_min_size
vae.tile_latent_min_size = args.vae_spatial_tile_sample_min_size // 8
elif args.vae_tiling:
vae.enable_spatial_tiling(True)
# Encode images
def encode(one_batch: list[ItemInfo]):
encode_and_save_batch(vae, one_batch)
encode_datasets(datasets, encode, args)
def setup_parser_common() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_config", type=str, required=True, help="path to dataset config .toml file")
parser.add_argument("--vae", type=str, required=False, default=None, help="path to vae checkpoint")
parser.add_argument("--vae_dtype", type=str, default=None, help="data type for VAE, default is float16")
parser.add_argument("--device", type=str, default=None, help="device to use, default is cuda if available")
parser.add_argument(
"--batch_size", type=int, default=None, help="batch size, override dataset config if dataset batch size > this"
)
parser.add_argument("--num_workers", type=int, default=None, help="number of workers for dataset. default is cpu count-1")
parser.add_argument("--skip_existing", action="store_true", help="skip existing cache files")
parser.add_argument("--keep_cache", action="store_true", help="keep cache files not in dataset")
parser.add_argument("--debug_mode", type=str, default=None, choices=["image", "console", "video"], help="debug mode")
parser.add_argument("--console_width", type=int, default=80, help="debug mode: console width")
parser.add_argument(
"--console_back", type=str, default=None, help="debug mode: console background color, one of ascii_magic.Back"
)
parser.add_argument(
"--console_num_images",
type=int,
default=None,
help="debug mode: not interactive, number of images to show for each dataset",
)
return parser
def hv_setup_parser(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
parser.add_argument(
"--vae_tiling",
action="store_true",
help="enable spatial tiling for VAE, default is False. If vae_spatial_tile_sample_min_size is set, this is automatically enabled",
)
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
parser.add_argument(
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
)
return parser
if __name__ == "__main__":
parser = setup_parser_common()
parser = hv_setup_parser(parser)
args = parser.parse_args()
main(args)