YiChen_FramePack_lora_early / frame_pack /k_diffusion_hunyuan.py
svjack's picture
Upload folder using huggingface_hub
ef46f0f verified
raw
history blame
4.34 kB
# original code: https://github.com/lllyasviel/FramePack
# original license: Apache-2.0
import torch
import math
# from diffusers_helper.k_diffusion.uni_pc_fm import sample_unipc
# from diffusers_helper.k_diffusion.wrapper import fm_wrapper
# from diffusers_helper.utils import repeat_to_batch_size
from frame_pack.uni_pc_fm import sample_unipc
from frame_pack.wrapper import fm_wrapper
from frame_pack.utils import repeat_to_batch_size
def flux_time_shift(t, mu=1.15, sigma=1.0):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def calculate_flux_mu(context_length, x1=256, y1=0.5, x2=4096, y2=1.15, exp_max=7.0):
k = (y2 - y1) / (x2 - x1)
b = y1 - k * x1
mu = k * context_length + b
mu = min(mu, math.log(exp_max))
return mu
def get_flux_sigmas_from_mu(n, mu):
sigmas = torch.linspace(1, 0, steps=n + 1)
sigmas = flux_time_shift(sigmas, mu=mu)
return sigmas
# @torch.inference_mode()
def sample_hunyuan(
transformer,
sampler="unipc",
initial_latent=None,
concat_latent=None,
strength=1.0,
width=512,
height=512,
frames=16,
real_guidance_scale=1.0,
distilled_guidance_scale=6.0,
guidance_rescale=0.0,
shift=None,
num_inference_steps=25,
batch_size=None,
generator=None,
prompt_embeds=None,
prompt_embeds_mask=None,
prompt_poolers=None,
negative_prompt_embeds=None,
negative_prompt_embeds_mask=None,
negative_prompt_poolers=None,
dtype=torch.bfloat16,
device=None,
negative_kwargs=None,
callback=None,
**kwargs,
):
device = device or transformer.device
if batch_size is None:
batch_size = int(prompt_embeds.shape[0])
latents = torch.randn(
(batch_size, 16, (frames + 3) // 4, height // 8, width // 8), generator=generator, device=generator.device
).to(device=device, dtype=torch.float32)
B, C, T, H, W = latents.shape
seq_length = T * H * W // 4 # 9*80*80//4 = 14400
if shift is None:
mu = calculate_flux_mu(seq_length, exp_max=7.0) # 1.9459... if seq_len is large, mu is clipped.
else:
mu = math.log(shift)
sigmas = get_flux_sigmas_from_mu(num_inference_steps, mu).to(device)
k_model = fm_wrapper(transformer)
if initial_latent is not None:
sigmas = sigmas * strength
first_sigma = sigmas[0].to(device=device, dtype=torch.float32)
initial_latent = initial_latent.to(device=device, dtype=torch.float32)
latents = initial_latent.float() * (1.0 - first_sigma) + latents.float() * first_sigma
if concat_latent is not None:
concat_latent = concat_latent.to(latents)
distilled_guidance = torch.tensor([distilled_guidance_scale * 1000.0] * batch_size).to(device=device, dtype=dtype)
prompt_embeds = repeat_to_batch_size(prompt_embeds, batch_size)
prompt_embeds_mask = repeat_to_batch_size(prompt_embeds_mask, batch_size)
prompt_poolers = repeat_to_batch_size(prompt_poolers, batch_size)
negative_prompt_embeds = repeat_to_batch_size(negative_prompt_embeds, batch_size)
negative_prompt_embeds_mask = repeat_to_batch_size(negative_prompt_embeds_mask, batch_size)
negative_prompt_poolers = repeat_to_batch_size(negative_prompt_poolers, batch_size)
concat_latent = repeat_to_batch_size(concat_latent, batch_size)
sampler_kwargs = dict(
dtype=dtype,
cfg_scale=real_guidance_scale,
cfg_rescale=guidance_rescale,
concat_latent=concat_latent,
positive=dict(
pooled_projections=prompt_poolers,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_embeds_mask,
guidance=distilled_guidance,
**kwargs,
),
negative=dict(
pooled_projections=negative_prompt_poolers,
encoder_hidden_states=negative_prompt_embeds,
encoder_attention_mask=negative_prompt_embeds_mask,
guidance=distilled_guidance,
**(kwargs if negative_kwargs is None else {**kwargs, **negative_kwargs}),
),
)
if sampler == "unipc":
results = sample_unipc(k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False, callback=callback)
else:
raise NotImplementedError(f"Sampler {sampler} is not supported.")
return results