|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Dict, Optional, Tuple, Union |
|
from dataclasses import dataclass |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from diffusers.utils.accelerate_utils import apply_forward_hook |
|
from diffusers.models.attention_processor import ( |
|
ADDED_KV_ATTENTION_PROCESSORS, |
|
CROSS_ATTENTION_PROCESSORS, |
|
Attention, |
|
AttentionProcessor, |
|
AttnAddedKVProcessor, |
|
AttnProcessor, |
|
) |
|
from diffusers.models.modeling_outputs import AutoencoderKLOutput |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from .vae import DecoderCausal3D, BaseOutput, DecoderOutput, DiagonalGaussianDistribution, EncoderCausal3D |
|
|
|
|
|
@dataclass |
|
class DecoderOutput2(BaseOutput): |
|
sample: torch.FloatTensor |
|
posterior: Optional[DiagonalGaussianDistribution] = None |
|
|
|
|
|
class AutoencoderKLCausal3D(ModelMixin, ConfigMixin): |
|
r""" |
|
A VAE model with KL loss for encoding images/videos into latents and decoding latent representations into images/videos. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_block_types: Tuple[str] = ("DownEncoderBlockCausal3D",), |
|
up_block_types: Tuple[str] = ("UpDecoderBlockCausal3D",), |
|
block_out_channels: Tuple[int] = (64,), |
|
layers_per_block: int = 1, |
|
act_fn: str = "silu", |
|
latent_channels: int = 4, |
|
norm_num_groups: int = 32, |
|
sample_size: int = 32, |
|
sample_tsize: int = 64, |
|
scaling_factor: float = 0.18215, |
|
force_upcast: float = True, |
|
spatial_compression_ratio: int = 8, |
|
time_compression_ratio: int = 4, |
|
mid_block_add_attention: bool = True, |
|
): |
|
super().__init__() |
|
|
|
self.time_compression_ratio = time_compression_ratio |
|
|
|
self.encoder = EncoderCausal3D( |
|
in_channels=in_channels, |
|
out_channels=latent_channels, |
|
down_block_types=down_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
act_fn=act_fn, |
|
norm_num_groups=norm_num_groups, |
|
double_z=True, |
|
time_compression_ratio=time_compression_ratio, |
|
spatial_compression_ratio=spatial_compression_ratio, |
|
mid_block_add_attention=mid_block_add_attention, |
|
) |
|
|
|
self.decoder = DecoderCausal3D( |
|
in_channels=latent_channels, |
|
out_channels=out_channels, |
|
up_block_types=up_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
norm_num_groups=norm_num_groups, |
|
act_fn=act_fn, |
|
time_compression_ratio=time_compression_ratio, |
|
spatial_compression_ratio=spatial_compression_ratio, |
|
mid_block_add_attention=mid_block_add_attention, |
|
) |
|
|
|
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1) |
|
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1) |
|
|
|
self.use_slicing = False |
|
self.use_spatial_tiling = False |
|
self.use_temporal_tiling = False |
|
|
|
|
|
self.tile_sample_min_tsize = sample_tsize |
|
self.tile_latent_min_tsize = sample_tsize // time_compression_ratio |
|
|
|
self.tile_sample_min_size = self.config.sample_size |
|
sample_size = self.config.sample_size[0] if isinstance(self.config.sample_size, (list, tuple)) else self.config.sample_size |
|
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) |
|
self.tile_overlap_factor = 0.25 |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (EncoderCausal3D, DecoderCausal3D)): |
|
module.gradient_checkpointing = value |
|
|
|
def enable_temporal_tiling(self, use_tiling: bool = True): |
|
self.use_temporal_tiling = use_tiling |
|
|
|
def disable_temporal_tiling(self): |
|
self.enable_temporal_tiling(False) |
|
|
|
def enable_spatial_tiling(self, use_tiling: bool = True): |
|
self.use_spatial_tiling = use_tiling |
|
|
|
def disable_spatial_tiling(self): |
|
self.enable_spatial_tiling(False) |
|
|
|
def enable_tiling(self, use_tiling: bool = True): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger videos. |
|
""" |
|
self.enable_spatial_tiling(use_tiling) |
|
self.enable_temporal_tiling(use_tiling) |
|
|
|
def disable_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing |
|
decoding in one step. |
|
""" |
|
self.disable_spatial_tiling() |
|
self.disable_temporal_tiling() |
|
|
|
def enable_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.use_slicing = True |
|
|
|
def disable_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing |
|
decoding in one step. |
|
""" |
|
self.use_slicing = False |
|
|
|
def set_chunk_size_for_causal_conv_3d(self, chunk_size: int): |
|
|
|
def set_chunk_size(module): |
|
if hasattr(module, "chunk_size"): |
|
module.chunk_size = chunk_size |
|
|
|
self.apply(set_chunk_size) |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor, _remove_lora=_remove_lora) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnAddedKVProcessor() |
|
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnProcessor() |
|
else: |
|
raise ValueError( |
|
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" |
|
) |
|
|
|
self.set_attn_processor(processor, _remove_lora=True) |
|
|
|
@apply_forward_hook |
|
def encode( |
|
self, x: torch.FloatTensor, return_dict: bool = True |
|
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: |
|
""" |
|
Encode a batch of images/videos into latents. |
|
|
|
Args: |
|
x (`torch.FloatTensor`): Input batch of images/videos. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
The latent representations of the encoded images/videos. If `return_dict` is True, a |
|
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. |
|
""" |
|
assert len(x.shape) == 5, "The input tensor should have 5 dimensions." |
|
|
|
if self.use_temporal_tiling and x.shape[2] > self.tile_sample_min_tsize: |
|
return self.temporal_tiled_encode(x, return_dict=return_dict) |
|
|
|
if self.use_spatial_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): |
|
return self.spatial_tiled_encode(x, return_dict=return_dict) |
|
|
|
if self.use_slicing and x.shape[0] > 1: |
|
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)] |
|
h = torch.cat(encoded_slices) |
|
else: |
|
h = self.encoder(x) |
|
|
|
moments = self.quant_conv(h) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: |
|
assert len(z.shape) == 5, "The input tensor should have 5 dimensions." |
|
|
|
if self.use_temporal_tiling and z.shape[2] > self.tile_latent_min_tsize: |
|
return self.temporal_tiled_decode(z, return_dict=return_dict) |
|
|
|
if self.use_spatial_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): |
|
return self.spatial_tiled_decode(z, return_dict=return_dict) |
|
|
|
z = self.post_quant_conv(z) |
|
dec = self.decoder(z) |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
@apply_forward_hook |
|
def decode(self, z: torch.FloatTensor, return_dict: bool = True, generator=None) -> Union[DecoderOutput, torch.FloatTensor]: |
|
""" |
|
Decode a batch of images/videos. |
|
|
|
Args: |
|
z (`torch.FloatTensor`): Input batch of latent vectors. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.vae.DecoderOutput`] or `tuple`: |
|
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is |
|
returned. |
|
|
|
""" |
|
if self.use_slicing and z.shape[0] > 1: |
|
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] |
|
decoded = torch.cat(decoded_slices) |
|
else: |
|
decoded = self._decode(z).sample |
|
|
|
if not return_dict: |
|
return (decoded,) |
|
|
|
return DecoderOutput(sample=decoded) |
|
|
|
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent) |
|
for y in range(blend_extent): |
|
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent) |
|
return b |
|
|
|
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent) |
|
for x in range(blend_extent): |
|
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent) |
|
return b |
|
|
|
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent) |
|
for x in range(blend_extent): |
|
b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (x / blend_extent) |
|
return b |
|
|
|
def spatial_tiled_encode( |
|
self, x: torch.FloatTensor, return_dict: bool = True, return_moments: bool = False |
|
) -> AutoencoderKLOutput: |
|
r"""Encode a batch of images/videos using a tiled encoder. |
|
|
|
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several |
|
steps. This is useful to keep memory use constant regardless of image/videos size. The end result of tiled encoding is |
|
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the |
|
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the |
|
output, but they should be much less noticeable. |
|
|
|
Args: |
|
x (`torch.FloatTensor`): Input batch of images/videos. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`: |
|
If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain |
|
`tuple` is returned. |
|
""" |
|
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) |
|
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) |
|
row_limit = self.tile_latent_min_size - blend_extent |
|
|
|
|
|
rows = [] |
|
for i in range(0, x.shape[-2], overlap_size): |
|
row = [] |
|
for j in range(0, x.shape[-1], overlap_size): |
|
tile = x[:, :, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] |
|
tile = self.encoder(tile) |
|
tile = self.quant_conv(tile) |
|
row.append(tile) |
|
rows.append(row) |
|
result_rows = [] |
|
for i, row in enumerate(rows): |
|
result_row = [] |
|
for j, tile in enumerate(row): |
|
|
|
|
|
if i > 0: |
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) |
|
if j > 0: |
|
tile = self.blend_h(row[j - 1], tile, blend_extent) |
|
result_row.append(tile[:, :, :, :row_limit, :row_limit]) |
|
result_rows.append(torch.cat(result_row, dim=-1)) |
|
|
|
moments = torch.cat(result_rows, dim=-2) |
|
if return_moments: |
|
return moments |
|
|
|
posterior = DiagonalGaussianDistribution(moments) |
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
def spatial_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: |
|
r""" |
|
Decode a batch of images/videos using a tiled decoder. |
|
|
|
Args: |
|
z (`torch.FloatTensor`): Input batch of latent vectors. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.vae.DecoderOutput`] or `tuple`: |
|
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is |
|
returned. |
|
""" |
|
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) |
|
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor) |
|
row_limit = self.tile_sample_min_size - blend_extent |
|
|
|
|
|
|
|
rows = [] |
|
for i in range(0, z.shape[-2], overlap_size): |
|
row = [] |
|
for j in range(0, z.shape[-1], overlap_size): |
|
tile = z[:, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] |
|
tile = self.post_quant_conv(tile) |
|
decoded = self.decoder(tile) |
|
row.append(decoded) |
|
rows.append(row) |
|
result_rows = [] |
|
for i, row in enumerate(rows): |
|
result_row = [] |
|
for j, tile in enumerate(row): |
|
|
|
|
|
if i > 0: |
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) |
|
if j > 0: |
|
tile = self.blend_h(row[j - 1], tile, blend_extent) |
|
result_row.append(tile[:, :, :, :row_limit, :row_limit]) |
|
result_rows.append(torch.cat(result_row, dim=-1)) |
|
|
|
dec = torch.cat(result_rows, dim=-2) |
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
def temporal_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput: |
|
|
|
B, C, T, H, W = x.shape |
|
overlap_size = int(self.tile_sample_min_tsize * (1 - self.tile_overlap_factor)) |
|
blend_extent = int(self.tile_latent_min_tsize * self.tile_overlap_factor) |
|
t_limit = self.tile_latent_min_tsize - blend_extent |
|
|
|
|
|
row = [] |
|
for i in range(0, T, overlap_size): |
|
tile = x[:, :, i : i + self.tile_sample_min_tsize + 1, :, :] |
|
if self.use_spatial_tiling and ( |
|
tile.shape[-1] > self.tile_sample_min_size or tile.shape[-2] > self.tile_sample_min_size |
|
): |
|
tile = self.spatial_tiled_encode(tile, return_moments=True) |
|
else: |
|
tile = self.encoder(tile) |
|
tile = self.quant_conv(tile) |
|
if i > 0: |
|
tile = tile[:, :, 1:, :, :] |
|
row.append(tile) |
|
result_row = [] |
|
for i, tile in enumerate(row): |
|
if i > 0: |
|
tile = self.blend_t(row[i - 1], tile, blend_extent) |
|
result_row.append(tile[:, :, :t_limit, :, :]) |
|
else: |
|
result_row.append(tile[:, :, : t_limit + 1, :, :]) |
|
|
|
moments = torch.cat(result_row, dim=2) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
def temporal_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: |
|
|
|
|
|
B, C, T, H, W = z.shape |
|
overlap_size = int(self.tile_latent_min_tsize * (1 - self.tile_overlap_factor)) |
|
blend_extent = int(self.tile_sample_min_tsize * self.tile_overlap_factor) |
|
t_limit = self.tile_sample_min_tsize - blend_extent |
|
|
|
row = [] |
|
for i in range(0, T, overlap_size): |
|
tile = z[:, :, i : i + self.tile_latent_min_tsize + 1, :, :] |
|
if self.use_spatial_tiling and ( |
|
tile.shape[-1] > self.tile_latent_min_size or tile.shape[-2] > self.tile_latent_min_size |
|
): |
|
decoded = self.spatial_tiled_decode(tile, return_dict=True).sample |
|
else: |
|
tile = self.post_quant_conv(tile) |
|
decoded = self.decoder(tile) |
|
if i > 0: |
|
decoded = decoded[:, :, 1:, :, :] |
|
row.append(decoded) |
|
result_row = [] |
|
for i, tile in enumerate(row): |
|
if i > 0: |
|
tile = self.blend_t(row[i - 1], tile, blend_extent) |
|
result_row.append(tile[:, :, :t_limit, :, :]) |
|
else: |
|
result_row.append(tile[:, :, : t_limit + 1, :, :]) |
|
|
|
dec = torch.cat(result_row, dim=2) |
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
sample_posterior: bool = False, |
|
return_dict: bool = True, |
|
return_posterior: bool = False, |
|
generator: Optional[torch.Generator] = None, |
|
) -> Union[DecoderOutput2, torch.FloatTensor]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): Input sample. |
|
sample_posterior (`bool`, *optional*, defaults to `False`): |
|
Whether to sample from the posterior. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. |
|
""" |
|
x = sample |
|
posterior = self.encode(x).latent_dist |
|
if sample_posterior: |
|
z = posterior.sample(generator=generator) |
|
else: |
|
z = posterior.mode() |
|
dec = self.decode(z).sample |
|
|
|
if not return_dict: |
|
if return_posterior: |
|
return (dec, posterior) |
|
else: |
|
return (dec,) |
|
if return_posterior: |
|
return DecoderOutput2(sample=dec, posterior=posterior) |
|
else: |
|
return DecoderOutput2(sample=dec) |
|
|
|
|
|
def fuse_qkv_projections(self): |
|
""" |
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, |
|
key, value) are fused. For cross-attention modules, key and value projection matrices are fused. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
""" |
|
self.original_attn_processors = None |
|
|
|
for _, attn_processor in self.attn_processors.items(): |
|
if "Added" in str(attn_processor.__class__.__name__): |
|
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") |
|
|
|
self.original_attn_processors = self.attn_processors |
|
|
|
for module in self.modules(): |
|
if isinstance(module, Attention): |
|
module.fuse_projections(fuse=True) |
|
|
|
|
|
def unfuse_qkv_projections(self): |
|
"""Disables the fused QKV projection if enabled. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
|
|
""" |
|
if self.original_attn_processors is not None: |
|
self.set_attn_processor(self.original_attn_processors) |
|
|