YiChen_FramePack_lora_early / wan_train_network.py
svjack's picture
Upload folder using huggingface_hub
ef46f0f verified
import argparse
from typing import Optional
from PIL import Image
import numpy as np
import torch
import torchvision.transforms.functional as TF
from tqdm import tqdm
from accelerate import Accelerator, init_empty_weights
from dataset.image_video_dataset import ARCHITECTURE_WAN, ARCHITECTURE_WAN_FULL, load_video
from hv_generate_video import resize_image_to_bucket
from hv_train_network import NetworkTrainer, load_prompts, clean_memory_on_device, setup_parser_common, read_config_from_file
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
from utils import model_utils
from utils.safetensors_utils import load_safetensors, MemoryEfficientSafeOpen
from wan.configs import WAN_CONFIGS
from wan.modules.clip import CLIPModel
from wan.modules.model import WanModel, detect_wan_sd_dtype, load_wan_model
from wan.modules.t5 import T5EncoderModel
from wan.modules.vae import WanVAE
from wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
class WanNetworkTrainer(NetworkTrainer):
def __init__(self):
super().__init__()
# region model specific
@property
def architecture(self) -> str:
return ARCHITECTURE_WAN
@property
def architecture_full_name(self) -> str:
return ARCHITECTURE_WAN_FULL
def handle_model_specific_args(self, args):
self.config = WAN_CONFIGS[args.task]
self._i2v_training = "i2v" in args.task # we cannot use config.i2v because Fun-Control T2V has i2v flag TODO refactor this
self._control_training = self.config.is_fun_control
self.dit_dtype = detect_wan_sd_dtype(args.dit)
if self.dit_dtype == torch.float16:
assert args.mixed_precision in ["fp16", "no"], "DiT weights are in fp16, mixed precision must be fp16 or no"
elif self.dit_dtype == torch.bfloat16:
assert args.mixed_precision in ["bf16", "no"], "DiT weights are in bf16, mixed precision must be bf16 or no"
if args.fp8_scaled and self.dit_dtype.itemsize == 1:
raise ValueError(
"DiT weights is already in fp8 format, cannot scale to fp8. Please use fp16/bf16 weights / DiTの重みはすでにfp8形式です。fp8にスケーリングできません。fp16/bf16の重みを使用してください"
)
# dit_dtype cannot be fp8, so we select the appropriate dtype
if self.dit_dtype.itemsize == 1:
self.dit_dtype = torch.float16 if args.mixed_precision == "fp16" else torch.bfloat16
args.dit_dtype = model_utils.dtype_to_str(self.dit_dtype)
self.default_guidance_scale = 1.0 # not used
def process_sample_prompts(
self,
args: argparse.Namespace,
accelerator: Accelerator,
sample_prompts: str,
):
config = self.config
device = accelerator.device
t5_path, clip_path, fp8_t5 = args.t5, args.clip, args.fp8_t5
logger.info(f"cache Text Encoder outputs for sample prompt: {sample_prompts}")
prompts = load_prompts(sample_prompts)
def encode_for_text_encoder(text_encoder):
sample_prompts_te_outputs = {} # (prompt) -> (embeds, mask)
# with accelerator.autocast(), torch.no_grad(): # this causes NaN if dit_dtype is fp16
t5_dtype = config.t5_dtype
with torch.amp.autocast(device_type=device.type, dtype=t5_dtype), torch.no_grad():
for prompt_dict in prompts:
if "negative_prompt" not in prompt_dict:
prompt_dict["negative_prompt"] = self.config["sample_neg_prompt"]
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", None)]:
if p is None:
continue
if p not in sample_prompts_te_outputs:
logger.info(f"cache Text Encoder outputs for prompt: {p}")
prompt_outputs = text_encoder([p], device)
sample_prompts_te_outputs[p] = prompt_outputs
return sample_prompts_te_outputs
# Load Text Encoder 1 and encode
logger.info(f"loading T5: {t5_path}")
t5 = T5EncoderModel(text_len=config.text_len, dtype=config.t5_dtype, device=device, weight_path=t5_path, fp8=fp8_t5)
logger.info("encoding with Text Encoder 1")
te_outputs_1 = encode_for_text_encoder(t5)
del t5
# load CLIP and encode image (for I2V training)
# Note: VAE encoding is done in do_inference() for I2V training, because we have VAE in the pipeline. Control video is also done in do_inference()
sample_prompts_image_embs = {}
for prompt_dict in prompts:
if prompt_dict.get("image_path", None) is not None and self.i2v_training:
sample_prompts_image_embs[prompt_dict["image_path"]] = None # this will be replaced with CLIP context
if len(sample_prompts_image_embs) > 0:
logger.info(f"loading CLIP: {clip_path}")
assert clip_path is not None, "CLIP path is required for I2V training / I2V学習にはCLIPのパスが必要です"
clip = CLIPModel(dtype=config.clip_dtype, device=device, weight_path=clip_path)
clip.model.to(device)
logger.info(f"Encoding image to CLIP context")
with torch.amp.autocast(device_type=device.type, dtype=torch.float16), torch.no_grad():
for image_path in sample_prompts_image_embs:
logger.info(f"Encoding image: {image_path}")
img = Image.open(image_path).convert("RGB")
img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(device) # -1 to 1
clip_context = clip.visual([img[:, None, :, :]])
sample_prompts_image_embs[image_path] = clip_context
del clip
clean_memory_on_device(device)
# prepare sample parameters
sample_parameters = []
for prompt_dict in prompts:
prompt_dict_copy = prompt_dict.copy()
p = prompt_dict.get("prompt", "")
prompt_dict_copy["t5_embeds"] = te_outputs_1[p][0]
p = prompt_dict.get("negative_prompt", None)
if p is not None:
prompt_dict_copy["negative_t5_embeds"] = te_outputs_1[p][0]
p = prompt_dict.get("image_path", None)
if p is not None and self.i2v_training:
prompt_dict_copy["clip_embeds"] = sample_prompts_image_embs[p]
sample_parameters.append(prompt_dict_copy)
clean_memory_on_device(accelerator.device)
return sample_parameters
def do_inference(
self,
accelerator,
args,
sample_parameter,
vae,
dit_dtype,
transformer,
discrete_flow_shift,
sample_steps,
width,
height,
frame_count,
generator,
do_classifier_free_guidance,
guidance_scale,
cfg_scale,
image_path=None,
control_video_path=None,
):
"""architecture dependent inference"""
model: WanModel = transformer
device = accelerator.device
if cfg_scale is None:
cfg_scale = 5.0
do_classifier_free_guidance = do_classifier_free_guidance and cfg_scale != 1.0
# Calculate latent video length based on VAE version
latent_video_length = (frame_count - 1) // self.config["vae_stride"][0] + 1
# Get embeddings
context = sample_parameter["t5_embeds"].to(device=device)
if do_classifier_free_guidance:
context_null = sample_parameter["negative_t5_embeds"].to(device=device)
else:
context_null = None
num_channels_latents = 16 # model.in_dim
vae_scale_factor = self.config["vae_stride"][1]
# Initialize latents
lat_h = height // vae_scale_factor
lat_w = width // vae_scale_factor
shape_or_frame = (1, num_channels_latents, 1, lat_h, lat_w)
latents = []
for _ in range(latent_video_length):
latents.append(torch.randn(shape_or_frame, generator=generator, device=device, dtype=torch.float32))
latents = torch.cat(latents, dim=2)
image_latents = None
if self.i2v_training or self.control_training:
# Move VAE to the appropriate device for sampling: consider to cache image latents in CPU in advance
vae.to(device)
vae.eval()
if self.i2v_training:
image = Image.open(image_path)
image = resize_image_to_bucket(image, (width, height)) # returns a numpy array
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(1).float() # C, 1, H, W
image = image / 127.5 - 1 # -1 to 1
# Create mask for the required number of frames
msk = torch.ones(1, frame_count, lat_h, lat_w, device=device)
msk[:, 1:] = 0
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
msk = msk.transpose(1, 2) # B, C, T, H, W
with torch.amp.autocast(device_type=device.type, dtype=vae.dtype), torch.no_grad():
# Zero padding for the required number of frames only
padding_frames = frame_count - 1 # The first frame is the input image
image = torch.concat([image, torch.zeros(3, padding_frames, height, width)], dim=1).to(device=device)
y = vae.encode([image])[0]
y = y[:, :latent_video_length] # may be not needed
y = y.unsqueeze(0) # add batch dim
image_latents = torch.concat([msk, y], dim=1)
if self.control_training:
# Control video
video = load_video(control_video_path, 0, frame_count, bucket_reso=(width, height)) # list of frames
video = np.stack(video, axis=0) # F, H, W, C
video = torch.from_numpy(video).permute(3, 0, 1, 2).float() # C, F, H, W
video = video / 127.5 - 1 # -1 to 1
video = video.to(device=device)
with torch.amp.autocast(device_type=device.type, dtype=vae.dtype), torch.no_grad():
control_latents = vae.encode([video])[0]
control_latents = control_latents[:, :latent_video_length]
control_latents = control_latents.unsqueeze(0) # add batch dim
# We supports Wan2.1-Fun-Control only
if image_latents is not None:
image_latents = image_latents[:, 4:] # remove mask for Wan2.1-Fun-Control
image_latents[:, :, 1:] = 0 # remove except the first frame
else:
image_latents = torch.zeros_like(control_latents) # B, C, F, H, W
image_latents = torch.concat([control_latents, image_latents], dim=1) # B, C, F, H, W
vae.to("cpu")
clean_memory_on_device(device)
# use the default value for num_train_timesteps (1000)
scheduler = FlowUniPCMultistepScheduler(shift=1, use_dynamic_shifting=False)
scheduler.set_timesteps(sample_steps, device=device, shift=discrete_flow_shift)
timesteps = scheduler.timesteps
# Generate noise for the required number of frames only
noise = torch.randn(16, latent_video_length, lat_h, lat_w, dtype=torch.float32, generator=generator, device=device).to(
"cpu"
)
# prepare the model input
max_seq_len = latent_video_length * lat_h * lat_w // (self.config.patch_size[1] * self.config.patch_size[2])
arg_c = {"context": [context], "seq_len": max_seq_len}
arg_null = {"context": [context_null], "seq_len": max_seq_len}
if self.i2v_training:
arg_c["clip_fea"] = sample_parameter["clip_embeds"].to(device=device, dtype=dit_dtype)
arg_null["clip_fea"] = arg_c["clip_fea"]
if self.i2v_training or self.control_training:
arg_c["y"] = image_latents
arg_null["y"] = image_latents
# Wrap the inner loop with tqdm to track progress over timesteps
prompt_idx = sample_parameter.get("enum", 0)
latent = noise
with torch.no_grad():
for i, t in enumerate(tqdm(timesteps, desc=f"Sampling timesteps for prompt {prompt_idx+1}")):
latent_model_input = [latent.to(device=device)]
timestep = t.unsqueeze(0)
with accelerator.autocast():
noise_pred_cond = model(latent_model_input, t=timestep, **arg_c)[0].to("cpu")
if do_classifier_free_guidance:
noise_pred_uncond = model(latent_model_input, t=timestep, **arg_null)[0].to("cpu")
else:
noise_pred_uncond = None
if do_classifier_free_guidance:
noise_pred = noise_pred_uncond + cfg_scale * (noise_pred_cond - noise_pred_uncond)
else:
noise_pred = noise_pred_cond
temp_x0 = scheduler.step(noise_pred.unsqueeze(0), t, latent.unsqueeze(0), return_dict=False, generator=generator)[0]
latent = temp_x0.squeeze(0)
# Move VAE to the appropriate device for sampling
vae.to(device)
vae.eval()
# Decode latents to video
logger.info(f"Decoding video from latents: {latent.shape}")
latent = latent.unsqueeze(0) # add batch dim
latent = latent.to(device=device)
with torch.amp.autocast(device_type=device.type, dtype=vae.dtype), torch.no_grad():
video = vae.decode(latent)[0] # vae returns list
video = video.unsqueeze(0) # add batch dim
del latent
logger.info(f"Decoding complete")
video = video.to(torch.float32).cpu()
video = (video / 2 + 0.5).clamp(0, 1) # -1 to 1 -> 0 to 1
vae.to("cpu")
clean_memory_on_device(device)
return video
def load_vae(self, args: argparse.Namespace, vae_dtype: torch.dtype, vae_path: str):
vae_path = args.vae
logger.info(f"Loading VAE model from {vae_path}")
cache_device = torch.device("cpu") if args.vae_cache_cpu else None
vae = WanVAE(vae_path=vae_path, device="cpu", dtype=vae_dtype, cache_device=cache_device)
return vae
def load_transformer(
self,
accelerator: Accelerator,
args: argparse.Namespace,
dit_path: str,
attn_mode: str,
split_attn: bool,
loading_device: str,
dit_weight_dtype: Optional[torch.dtype],
):
model = load_wan_model(
self.config, accelerator.device, dit_path, attn_mode, split_attn, loading_device, dit_weight_dtype, args.fp8_scaled
)
return model
def scale_shift_latents(self, latents):
return latents
def call_dit(
self,
args: argparse.Namespace,
accelerator: Accelerator,
transformer,
latents: torch.Tensor,
batch: dict[str, torch.Tensor],
noise: torch.Tensor,
noisy_model_input: torch.Tensor,
timesteps: torch.Tensor,
network_dtype: torch.dtype,
):
model: WanModel = transformer
# I2V training and Control training
image_latents = None
clip_fea = None
if self.i2v_training:
image_latents = batch["latents_image"]
image_latents = image_latents.to(device=accelerator.device, dtype=network_dtype)
clip_fea = batch["clip"]
clip_fea = clip_fea.to(device=accelerator.device, dtype=network_dtype)
if self.control_training:
control_latents = batch["latents_control"]
control_latents = control_latents.to(device=accelerator.device, dtype=network_dtype)
if image_latents is not None:
image_latents = image_latents[:, 4:] # remove mask for Wan2.1-Fun-Control
image_latents[:, :, 1:] = 0 # remove except the first frame
else:
image_latents = torch.zeros_like(control_latents) # B, C, F, H, W
image_latents = torch.concat([control_latents, image_latents], dim=1) # B, C, F, H, W
control_latents = None
context = [t.to(device=accelerator.device, dtype=network_dtype) for t in batch["t5"]]
# ensure the hidden state will require grad
if args.gradient_checkpointing:
noisy_model_input.requires_grad_(True)
for t in context:
t.requires_grad_(True)
if image_latents is not None:
image_latents.requires_grad_(True)
if clip_fea is not None:
clip_fea.requires_grad_(True)
# call DiT
lat_f, lat_h, lat_w = latents.shape[2:5]
seq_len = lat_f * lat_h * lat_w // (self.config.patch_size[0] * self.config.patch_size[1] * self.config.patch_size[2])
latents = latents.to(device=accelerator.device, dtype=network_dtype)
noisy_model_input = noisy_model_input.to(device=accelerator.device, dtype=network_dtype)
with accelerator.autocast():
model_pred = model(noisy_model_input, t=timesteps, context=context, clip_fea=clip_fea, seq_len=seq_len, y=image_latents)
model_pred = torch.stack(model_pred, dim=0) # list to tensor
# flow matching loss
target = noise - latents
return model_pred, target
# endregion model specific
def wan_setup_parser(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
"""Wan2.1 specific parser setup"""
parser.add_argument("--task", type=str, default="t2v-14B", choices=list(WAN_CONFIGS.keys()), help="The task to run.")
parser.add_argument("--fp8_scaled", action="store_true", help="use scaled fp8 for DiT / DiTにスケーリングされたfp8を使う")
parser.add_argument("--t5", type=str, default=None, help="text encoder (T5) checkpoint path")
parser.add_argument("--fp8_t5", action="store_true", help="use fp8 for Text Encoder model")
parser.add_argument(
"--clip",
type=str,
default=None,
help="text encoder (CLIP) checkpoint path, optional. If training I2V model, this is required",
)
parser.add_argument("--vae_cache_cpu", action="store_true", help="cache features in VAE on CPU")
return parser
if __name__ == "__main__":
parser = setup_parser_common()
parser = wan_setup_parser(parser)
args = parser.parse_args()
args = read_config_from_file(args, parser)
args.dit_dtype = None # automatically detected
if args.vae_dtype is None:
args.vae_dtype = "bfloat16" # make bfloat16 as default for VAE
trainer = WanNetworkTrainer()
trainer.train(args)