import argparse from datetime import datetime from pathlib import Path import random import sys import os import time from typing import Optional, Union import numpy as np import torch import torchvision import accelerate from diffusers.utils.torch_utils import randn_tensor from transformers.models.llama import LlamaModel from tqdm import tqdm import av from einops import rearrange from safetensors.torch import load_file, save_file from safetensors import safe_open from PIL import Image from hunyuan_model import vae from hunyuan_model.text_encoder import TextEncoder from hunyuan_model.text_encoder import PROMPT_TEMPLATE from hunyuan_model.vae import load_vae from hunyuan_model.models import load_transformer, get_rotary_pos_embed from hunyuan_model.fp8_optimization import convert_fp8_linear from modules.scheduling_flow_match_discrete import FlowMatchDiscreteScheduler from networks import lora try: from lycoris.kohya import create_network_from_weights except: pass from utils.model_utils import str_to_dtype from utils.safetensors_utils import mem_eff_save_file from dataset.image_video_dataset import load_video, glob_images, resize_image_to_bucket import logging logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def clean_memory_on_device(device): if device.type == "cuda": torch.cuda.empty_cache() elif device.type == "cpu": pass elif device.type == "mps": # not tested torch.mps.empty_cache() def synchronize_device(device: torch.device): if device.type == "cuda": torch.cuda.synchronize() elif device.type == "xpu": torch.xpu.synchronize() elif device.type == "mps": torch.mps.synchronize() def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=1, fps=24): """save videos by video tensor copy from https://github.com/guoyww/AnimateDiff/blob/e92bd5671ba62c0d774a32951453e328018b7c5b/animatediff/utils/util.py#L61 Args: videos (torch.Tensor): video tensor predicted by the model path (str): path to save video rescale (bool, optional): rescale the video tensor from [-1, 1] to . Defaults to False. n_rows (int, optional): Defaults to 1. fps (int, optional): video save fps. Defaults to 8. """ videos = rearrange(videos, "b c t h w -> t b c h w") outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=n_rows) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = torch.clamp(x, 0, 1) x = (x * 255).numpy().astype(np.uint8) outputs.append(x) os.makedirs(os.path.dirname(path), exist_ok=True) # # save video with av # container = av.open(path, "w") # stream = container.add_stream("libx264", rate=fps) # for x in outputs: # frame = av.VideoFrame.from_ndarray(x, format="rgb24") # packet = stream.encode(frame) # container.mux(packet) # packet = stream.encode(None) # container.mux(packet) # container.close() height, width, _ = outputs[0].shape # create output container container = av.open(path, mode="w") # create video stream codec = "libx264" pixel_format = "yuv420p" stream = container.add_stream(codec, rate=fps) stream.width = width stream.height = height stream.pix_fmt = pixel_format stream.bit_rate = 4000000 # 4Mbit/s for frame_array in outputs: frame = av.VideoFrame.from_ndarray(frame_array, format="rgb24") packets = stream.encode(frame) for packet in packets: container.mux(packet) for packet in stream.encode(): container.mux(packet) container.close() def save_images_grid( videos: torch.Tensor, parent_dir: str, image_name: str, rescale: bool = False, n_rows: int = 1, create_subdir=True ): videos = rearrange(videos, "b c t h w -> t b c h w") outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=n_rows) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = torch.clamp(x, 0, 1) x = (x * 255).numpy().astype(np.uint8) outputs.append(x) if create_subdir: output_dir = os.path.join(parent_dir, image_name) else: output_dir = parent_dir os.makedirs(output_dir, exist_ok=True) for i, x in enumerate(outputs): image_path = os.path.join(output_dir, f"{image_name}_{i:03d}.png") image = Image.fromarray(x) image.save(image_path) # region Encoding prompt def encode_prompt(prompt: Union[str, list[str]], device: torch.device, num_videos_per_prompt: int, text_encoder: TextEncoder): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`): prompt to be encoded device: (`torch.device`): torch device num_videos_per_prompt (`int`): number of videos that should be generated per prompt text_encoder (TextEncoder): text encoder to be used for encoding the prompt """ # LoRA and Textual Inversion are not supported in this script # negative prompt and prompt embedding are not supported in this script # clip_skip is not supported in this script because it is not used in the original script data_type = "video" # video only, image is not supported text_inputs = text_encoder.text2tokens(prompt, data_type=data_type) with torch.no_grad(): prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type, device=device) prompt_embeds = prompt_outputs.hidden_state attention_mask = prompt_outputs.attention_mask if attention_mask is not None: attention_mask = attention_mask.to(device) bs_embed, seq_len = attention_mask.shape attention_mask = attention_mask.repeat(1, num_videos_per_prompt) attention_mask = attention_mask.view(bs_embed * num_videos_per_prompt, seq_len) prompt_embeds_dtype = text_encoder.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) if prompt_embeds.ndim == 2: bs_embed, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt) prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, -1) else: bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1) return prompt_embeds, attention_mask def encode_input_prompt(prompt: Union[str, list[str]], args, device, fp8_llm=False, accelerator=None): # constants prompt_template_video = "dit-llm-encode-video" prompt_template = "dit-llm-encode" text_encoder_dtype = torch.float16 text_encoder_type = "llm" text_len = 256 hidden_state_skip_layer = 2 apply_final_norm = False reproduce = False text_encoder_2_type = "clipL" text_len_2 = 77 num_videos = 1 # if args.prompt_template_video is not None: # crop_start = PROMPT_TEMPLATE[args.prompt_template_video].get("crop_start", 0) # elif args.prompt_template is not None: # crop_start = PROMPT_TEMPLATE[args.prompt_template].get("crop_start", 0) # else: # crop_start = 0 crop_start = PROMPT_TEMPLATE[prompt_template_video].get("crop_start", 0) max_length = text_len + crop_start # prompt_template prompt_template = PROMPT_TEMPLATE[prompt_template] # prompt_template_video prompt_template_video = PROMPT_TEMPLATE[prompt_template_video] # if args.prompt_template_video is not None else None # load text encoders logger.info(f"loading text encoder: {args.text_encoder1}") text_encoder = TextEncoder( text_encoder_type=text_encoder_type, max_length=max_length, text_encoder_dtype=text_encoder_dtype, text_encoder_path=args.text_encoder1, tokenizer_type=text_encoder_type, prompt_template=prompt_template, prompt_template_video=prompt_template_video, hidden_state_skip_layer=hidden_state_skip_layer, apply_final_norm=apply_final_norm, reproduce=reproduce, ) text_encoder.eval() if fp8_llm: org_dtype = text_encoder.dtype logger.info(f"Moving and casting text encoder to {device} and torch.float8_e4m3fn") text_encoder.to(device=device, dtype=torch.float8_e4m3fn) # prepare LLM for fp8 def prepare_fp8(llama_model: LlamaModel, target_dtype): def forward_hook(module): def forward(hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + module.variance_epsilon) return module.weight.to(input_dtype) * hidden_states.to(input_dtype) return forward for module in llama_model.modules(): if module.__class__.__name__ in ["Embedding"]: # print("set", module.__class__.__name__, "to", target_dtype) module.to(target_dtype) if module.__class__.__name__ in ["LlamaRMSNorm"]: # print("set", module.__class__.__name__, "hooks") module.forward = forward_hook(module) prepare_fp8(text_encoder.model, org_dtype) logger.info(f"loading text encoder 2: {args.text_encoder2}") text_encoder_2 = TextEncoder( text_encoder_type=text_encoder_2_type, max_length=text_len_2, text_encoder_dtype=text_encoder_dtype, text_encoder_path=args.text_encoder2, tokenizer_type=text_encoder_2_type, reproduce=reproduce, ) text_encoder_2.eval() # encode prompt logger.info(f"Encoding prompt with text encoder 1") text_encoder.to(device=device) if fp8_llm: with accelerator.autocast(): prompt_embeds, prompt_mask = encode_prompt(prompt, device, num_videos, text_encoder) else: prompt_embeds, prompt_mask = encode_prompt(prompt, device, num_videos, text_encoder) text_encoder = None clean_memory_on_device(device) logger.info(f"Encoding prompt with text encoder 2") text_encoder_2.to(device=device) prompt_embeds_2, prompt_mask_2 = encode_prompt(prompt, device, num_videos, text_encoder_2) prompt_embeds = prompt_embeds.to("cpu") prompt_mask = prompt_mask.to("cpu") prompt_embeds_2 = prompt_embeds_2.to("cpu") prompt_mask_2 = prompt_mask_2.to("cpu") text_encoder_2 = None clean_memory_on_device(device) return prompt_embeds, prompt_mask, prompt_embeds_2, prompt_mask_2 # endregion def prepare_vae(args, device): vae_dtype = torch.float16 if args.vae_dtype is None else str_to_dtype(args.vae_dtype) vae, _, s_ratio, t_ratio = load_vae(vae_dtype=vae_dtype, device=device, vae_path=args.vae) vae.eval() # vae_kwargs = {"s_ratio": s_ratio, "t_ratio": t_ratio} # set chunk_size to CausalConv3d recursively chunk_size = args.vae_chunk_size if chunk_size is not None: vae.set_chunk_size_for_causal_conv_3d(chunk_size) logger.info(f"Set chunk_size to {chunk_size} for CausalConv3d") if args.vae_spatial_tile_sample_min_size is not None: vae.enable_spatial_tiling(True) vae.tile_sample_min_size = args.vae_spatial_tile_sample_min_size vae.tile_latent_min_size = args.vae_spatial_tile_sample_min_size // 8 # elif args.vae_tiling: else: vae.enable_spatial_tiling(True) return vae, vae_dtype def encode_to_latents(args, video, device): vae, vae_dtype = prepare_vae(args, device) video = video.to(device=device, dtype=vae_dtype) video = video * 2 - 1 # 0, 1 -> -1, 1 with torch.no_grad(): latents = vae.encode(video).latent_dist.sample() if hasattr(vae.config, "shift_factor") and vae.config.shift_factor: latents = (latents - vae.config.shift_factor) * vae.config.scaling_factor else: latents = latents * vae.config.scaling_factor return latents def decode_latents(args, latents, device): vae, vae_dtype = prepare_vae(args, device) expand_temporal_dim = False if len(latents.shape) == 4: latents = latents.unsqueeze(2) expand_temporal_dim = True elif len(latents.shape) == 5: pass else: raise ValueError(f"Only support latents with shape (b, c, h, w) or (b, c, f, h, w), but got {latents.shape}.") if hasattr(vae.config, "shift_factor") and vae.config.shift_factor: latents = latents / vae.config.scaling_factor + vae.config.shift_factor else: latents = latents / vae.config.scaling_factor latents = latents.to(device=device, dtype=vae_dtype) with torch.no_grad(): image = vae.decode(latents, return_dict=False)[0] if expand_temporal_dim: image = image.squeeze(2) image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 image = image.cpu().float() return image def parse_args(): parser = argparse.ArgumentParser(description="HunyuanVideo inference script") parser.add_argument("--dit", type=str, required=True, help="DiT checkpoint path or directory") parser.add_argument( "--dit_in_channels", type=int, default=None, help="input channels for DiT, default is None (automatically detect). 32 for SkyReels-I2V, 16 for others", ) parser.add_argument("--vae", type=str, required=True, help="VAE checkpoint path or directory") parser.add_argument("--vae_dtype", type=str, default=None, help="data type for VAE, default is float16") parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory") parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory") # LoRA parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path") parser.add_argument("--lora_multiplier", type=float, nargs="*", default=1.0, help="LoRA multiplier") parser.add_argument( "--save_merged_model", type=str, default=None, help="Save merged model to path. If specified, no inference will be performed.", ) parser.add_argument("--exclude_single_blocks", action="store_true", help="Exclude single blocks when loading LoRA weights") # inference parser.add_argument("--prompt", type=str, required=True, help="prompt for generation") parser.add_argument("--negative_prompt", type=str, default=None, help="negative prompt for generation") parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size") parser.add_argument("--video_length", type=int, default=129, help="video length") parser.add_argument("--fps", type=int, default=24, help="video fps") parser.add_argument("--infer_steps", type=int, default=50, help="number of inference steps") parser.add_argument("--save_path", type=str, required=True, help="path to save generated video") parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.") parser.add_argument( "--guidance_scale", type=float, default=1.0, help="Guidance scale for classifier free guidance. Default is 1.0 (means no guidance)", ) parser.add_argument("--embedded_cfg_scale", type=float, default=6.0, help="Embeded classifier free guidance scale.") parser.add_argument("--video_path", type=str, default=None, help="path to video for video2video inference") parser.add_argument( "--image_path", type=str, default=None, help="path to image for image2video inference, only works for SkyReels-I2V model" ) parser.add_argument( "--split_uncond", action="store_true", help="split unconditional call for classifier free guidance, slower but less memory usage", ) parser.add_argument("--strength", type=float, default=0.8, help="strength for video2video inference") # Flow Matching parser.add_argument("--flow_shift", type=float, default=7.0, help="Shift factor for flow matching schedulers.") parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model") parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)") parser.add_argument( "--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU" ) parser.add_argument( "--attn_mode", type=str, default="torch", choices=["flash", "torch", "sageattn", "xformers", "sdpa"], help="attention mode" ) parser.add_argument( "--split_attn", action="store_true", help="use split attention, default is False. if True, --split_uncond becomes True" ) parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE") parser.add_argument( "--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256" ) parser.add_argument("--blocks_to_swap", type=int, default=None, help="number of blocks to swap in the model") parser.add_argument("--img_in_txt_in_offloading", action="store_true", help="offload img_in and txt_in to cpu") parser.add_argument( "--output_type", type=str, default="video", choices=["video", "images", "latent", "both"], help="output type" ) parser.add_argument("--no_metadata", action="store_true", help="do not save metadata") parser.add_argument("--latent_path", type=str, nargs="*", default=None, help="path to latent for decode. no inference") parser.add_argument("--lycoris", action="store_true", help="use lycoris for inference") parser.add_argument("--fp8_fast", action="store_true", help="Enable fast FP8 arthimetic(RTX 4XXX+)") parser.add_argument("--compile", action="store_true", help="Enable torch.compile") parser.add_argument( "--compile_args", nargs=4, metavar=("BACKEND", "MODE", "DYNAMIC", "FULLGRAPH"), default=["inductor", "max-autotune-no-cudagraphs", "False", "False"], help="Torch.compile settings", ) args = parser.parse_args() assert (args.latent_path is None or len(args.latent_path) == 0) or ( args.output_type == "images" or args.output_type == "video" ), "latent_path is only supported for images or video output" # update dit_weight based on model_base if not exists if args.fp8_fast and not args.fp8: raise ValueError("--fp8_fast requires --fp8") return args def check_inputs(args): height = args.video_size[0] width = args.video_size[1] video_length = args.video_length if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") return height, width, video_length def main(): args = parse_args() device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu" device = torch.device(device) dit_dtype = torch.bfloat16 dit_weight_dtype = torch.float8_e4m3fn if args.fp8 else dit_dtype logger.info(f"Using device: {device}, DiT precision: {dit_dtype}, weight precision: {dit_weight_dtype}") original_base_names = None if args.latent_path is not None and len(args.latent_path) > 0: original_base_names = [] latents_list = [] seeds = [] for latent_path in args.latent_path: original_base_names.append(os.path.splitext(os.path.basename(latent_path))[0]) seed = 0 if os.path.splitext(latent_path)[1] != ".safetensors": latents = torch.load(latent_path, map_location="cpu") else: latents = load_file(latent_path)["latent"] with safe_open(latent_path, framework="pt") as f: metadata = f.metadata() if metadata is None: metadata = {} logger.info(f"Loaded metadata: {metadata}") if "seeds" in metadata: seed = int(metadata["seeds"]) seeds.append(seed) latents_list.append(latents) logger.info(f"Loaded latent from {latent_path}. Shape: {latents.shape}") latents = torch.stack(latents_list, dim=0) else: # prepare accelerator mixed_precision = "bf16" if dit_dtype == torch.bfloat16 else "fp16" accelerator = accelerate.Accelerator(mixed_precision=mixed_precision) # load prompt prompt = args.prompt # TODO load prompts from file assert prompt is not None, "prompt is required" # check inputs: may be height, width, video_length etc will be changed for each generation in future height, width, video_length = check_inputs(args) # encode prompt with LLM and Text Encoder logger.info(f"Encoding prompt: {prompt}") do_classifier_free_guidance = args.guidance_scale != 1.0 if do_classifier_free_guidance: negative_prompt = args.negative_prompt if negative_prompt is None: logger.info("Negative prompt is not provided, using empty prompt") negative_prompt = "" logger.info(f"Encoding negative prompt: {negative_prompt}") prompt = [negative_prompt, prompt] else: if args.negative_prompt is not None: logger.warning("Negative prompt is provided but guidance_scale is 1.0, negative prompt will be ignored.") prompt_embeds, prompt_mask, prompt_embeds_2, prompt_mask_2 = encode_input_prompt( prompt, args, device, args.fp8_llm, accelerator ) # encode latents for video2video inference video_latents = None if args.video_path is not None: # v2v inference logger.info(f"Video2Video inference: {args.video_path}") video = load_video(args.video_path, 0, video_length, bucket_reso=(width, height)) # list of frames if len(video) < video_length: raise ValueError(f"Video length is less than {video_length}") video = np.stack(video, axis=0) # F, H, W, C video = torch.from_numpy(video).permute(3, 0, 1, 2).unsqueeze(0).float() # 1, C, F, H, W video = video / 255.0 logger.info(f"Encoding video to latents") video_latents = encode_to_latents(args, video, device) video_latents = video_latents.to(device=device, dtype=dit_dtype) clean_memory_on_device(device) # encode latents for image2video inference image_latents = None if args.image_path is not None: # i2v inference logger.info(f"Image2Video inference: {args.image_path}") image = Image.open(args.image_path) image = resize_image_to_bucket(image, (width, height)) # returns a numpy array image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).unsqueeze(2).float() # 1, C, 1, H, W image = image / 255.0 logger.info(f"Encoding image to latents") image_latents = encode_to_latents(args, image, device) # 1, C, 1, H, W image_latents = image_latents.to(device=device, dtype=dit_dtype) clean_memory_on_device(device) # load DiT model blocks_to_swap = args.blocks_to_swap if args.blocks_to_swap else 0 loading_device = "cpu" # if blocks_to_swap > 0 else device logger.info(f"Loading DiT model from {args.dit}") if args.attn_mode == "sdpa": args.attn_mode = "torch" # if image_latents is given, the model should be I2V model, so the in_channels should be 32 dit_in_channels = args.dit_in_channels if args.dit_in_channels is not None else (32 if image_latents is not None else 16) # if we use LoRA, weigths should be bf16 instead of fp8, because merging should be done in bf16 # the model is too large, so we load the model to cpu. in addition, the .pt file is loaded to cpu anyway # on the fly merging will be a solution for this issue for .safetenors files (not implemented yet) transformer = load_transformer( args.dit, args.attn_mode, args.split_attn, loading_device, dit_dtype, in_channels=dit_in_channels ) transformer.eval() # load LoRA weights if args.lora_weight is not None and len(args.lora_weight) > 0: for i, lora_weight in enumerate(args.lora_weight): if args.lora_multiplier is not None and len(args.lora_multiplier) > i: lora_multiplier = args.lora_multiplier[i] else: lora_multiplier = 1.0 logger.info(f"Loading LoRA weights from {lora_weight} with multiplier {lora_multiplier}") weights_sd = load_file(lora_weight) # Filter to exclude keys that are part of single_blocks if args.exclude_single_blocks: filtered_weights = {k: v for k, v in weights_sd.items() if "single_blocks" not in k} weights_sd = filtered_weights if args.lycoris: lycoris_net, _ = create_network_from_weights( multiplier=lora_multiplier, file=None, weights_sd=weights_sd, unet=transformer, text_encoder=None, vae=None, for_inference=True, ) else: network = lora.create_arch_network_from_weights( lora_multiplier, weights_sd, unet=transformer, for_inference=True ) logger.info("Merging LoRA weights to DiT model") # try: # network.apply_to(None, transformer, apply_text_encoder=False, apply_unet=True) # info = network.load_state_dict(weights_sd, strict=True) # logger.info(f"Loaded LoRA weights from {weights_file}: {info}") # network.eval() # network.to(device) # except Exception as e: if args.lycoris: lycoris_net.merge_to(None, transformer, weights_sd, dtype=None, device=device) else: network.merge_to(None, transformer, weights_sd, device=device, non_blocking=True) synchronize_device(device) logger.info("LoRA weights loaded") # save model here before casting to dit_weight_dtype if args.save_merged_model: logger.info(f"Saving merged model to {args.save_merged_model}") mem_eff_save_file(transformer.state_dict(), args.save_merged_model) # save_file needs a lot of memory logger.info("Merged model saved") return logger.info(f"Casting model to {dit_weight_dtype}") transformer.to(dtype=dit_weight_dtype) if args.fp8_fast: logger.info("Enabling FP8 acceleration") params_to_keep = {"norm", "bias", "time_in", "vector_in", "guidance_in", "txt_in", "img_in"} for name, param in transformer.named_parameters(): dtype_to_use = dit_dtype if any(keyword in name for keyword in params_to_keep) else dit_weight_dtype param.to(dtype=dtype_to_use) convert_fp8_linear(transformer, dit_dtype, params_to_keep=params_to_keep) if args.compile: compile_backend, compile_mode, compile_dynamic, compile_fullgraph = args.compile_args logger.info( f"Torch Compiling[Backend: {compile_backend}; Mode: {compile_mode}; Dynamic: {compile_dynamic}; Fullgraph: {compile_fullgraph}]" ) torch._dynamo.config.cache_size_limit = 32 for i, block in enumerate(transformer.single_blocks): compiled_block = torch.compile( block, backend=compile_backend, mode=compile_mode, dynamic=compile_dynamic.lower() in "true", fullgraph=compile_fullgraph.lower() in "true", ) transformer.single_blocks[i] = compiled_block for i, block in enumerate(transformer.double_blocks): compiled_block = torch.compile( block, backend=compile_backend, mode=compile_mode, dynamic=compile_dynamic.lower() in "true", fullgraph=compile_fullgraph.lower() in "true", ) transformer.double_blocks[i] = compiled_block if blocks_to_swap > 0: logger.info(f"Enable swap {blocks_to_swap} blocks to CPU from device: {device}") transformer.enable_block_swap(blocks_to_swap, device, supports_backward=False) transformer.move_to_device_except_swap_blocks(device) transformer.prepare_block_swap_before_forward() else: logger.info(f"Moving model to {device}") transformer.to(device=device) if args.img_in_txt_in_offloading: logger.info("Enable offloading img_in and txt_in to CPU") transformer.enable_img_in_txt_in_offloading() # load scheduler logger.info(f"Loading scheduler") scheduler = FlowMatchDiscreteScheduler(shift=args.flow_shift, reverse=True, solver="euler") # Prepare timesteps num_inference_steps = args.infer_steps scheduler.set_timesteps(num_inference_steps, device=device) # n_tokens is not used in FlowMatchDiscreteScheduler timesteps = scheduler.timesteps # Prepare generator num_videos_per_prompt = 1 # args.num_videos # currently only support 1 video per prompt, this is a batch size seed = args.seed if seed is None: seeds = [random.randint(0, 2**32 - 1) for _ in range(num_videos_per_prompt)] elif isinstance(seed, int): seeds = [seed + i for i in range(num_videos_per_prompt)] else: raise ValueError(f"Seed must be an integer or None, got {seed}.") generator = [torch.Generator(device).manual_seed(seed) for seed in seeds] # Prepare noisy latents num_channels_latents = 16 # transformer.config.in_channels vae_scale_factor = 2 ** (4 - 1) # len(self.vae.config.block_out_channels) == 4 vae_ver = vae.VAE_VER if "884" in vae_ver: latent_video_length = (video_length - 1) // 4 + 1 elif "888" in vae_ver: latent_video_length = (video_length - 1) // 8 + 1 else: latent_video_length = video_length # shape = ( # num_videos_per_prompt, # num_channels_latents, # latent_video_length, # height // vae_scale_factor, # width // vae_scale_factor, # ) # latents = randn_tensor(shape, generator=generator, device=device, dtype=dit_dtype) # make first N frames to be the same if the given seed is same shape_of_frame = (num_videos_per_prompt, num_channels_latents, 1, height // vae_scale_factor, width // vae_scale_factor) latents = [] for i in range(latent_video_length): latents.append(randn_tensor(shape_of_frame, generator=generator, device=device, dtype=dit_dtype)) latents = torch.cat(latents, dim=2) # pad image_latents to match the length of video_latents if image_latents is not None: zero_latents = torch.zeros_like(latents) zero_latents[:, :, :1, :, :] = image_latents image_latents = zero_latents if args.video_path is not None: # v2v inference noise = latents assert noise.shape == video_latents.shape, f"noise shape {noise.shape} != video_latents shape {video_latents.shape}" num_inference_steps = int(num_inference_steps * args.strength) timestep_start = scheduler.timesteps[-num_inference_steps] # larger strength, less inference steps and more start time t = timestep_start / 1000.0 latents = noise * t + video_latents * (1 - t) timesteps = timesteps[-num_inference_steps:] logger.info(f"strength: {args.strength}, num_inference_steps: {num_inference_steps}, timestep_start: {timestep_start}") # FlowMatchDiscreteScheduler does not have init_noise_sigma # Denoising loop embedded_guidance_scale = args.embedded_cfg_scale if embedded_guidance_scale is not None: guidance_expand = torch.tensor([embedded_guidance_scale * 1000.0] * latents.shape[0], dtype=torch.float32, device="cpu") guidance_expand = guidance_expand.to(device=device, dtype=dit_dtype) if do_classifier_free_guidance: guidance_expand = torch.cat([guidance_expand, guidance_expand], dim=0) else: guidance_expand = None freqs_cos, freqs_sin = get_rotary_pos_embed(vae_ver, transformer, video_length, height, width) # n_tokens = freqs_cos.shape[0] # move and cast all inputs to the correct device and dtype prompt_embeds = prompt_embeds.to(device=device, dtype=dit_dtype) prompt_mask = prompt_mask.to(device=device) prompt_embeds_2 = prompt_embeds_2.to(device=device, dtype=dit_dtype) prompt_mask_2 = prompt_mask_2.to(device=device) freqs_cos = freqs_cos.to(device=device, dtype=dit_dtype) freqs_sin = freqs_sin.to(device=device, dtype=dit_dtype) num_warmup_steps = len(timesteps) - num_inference_steps * scheduler.order # this should be 0 in v2v inference # assert split_uncond and split_attn if args.split_attn and do_classifier_free_guidance and not args.split_uncond: logger.warning("split_attn is enabled, split_uncond will be enabled as well.") args.split_uncond = True # with torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA]) as p: with tqdm(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): latents = scheduler.scale_model_input(latents, t) # predict the noise residual with torch.no_grad(), accelerator.autocast(): latents_input = latents if not do_classifier_free_guidance else torch.cat([latents, latents], dim=0) if image_latents is not None: latents_image_input = ( image_latents if not do_classifier_free_guidance else torch.cat([image_latents, image_latents], dim=0) ) latents_input = torch.cat([latents_input, latents_image_input], dim=1) # 1 or 2, C*2, F, H, W batch_size = 1 if args.split_uncond else latents_input.shape[0] noise_pred_list = [] for j in range(0, latents_input.shape[0], batch_size): noise_pred = transformer( # For an input image (129, 192, 336) (1, 256, 256) latents_input[j : j + batch_size], # [1, 16, 33, 24, 42] t.repeat(batch_size).to(device=device, dtype=dit_dtype), # [1] text_states=prompt_embeds[j : j + batch_size], # [1, 256, 4096] text_mask=prompt_mask[j : j + batch_size], # [1, 256] text_states_2=prompt_embeds_2[j : j + batch_size], # [1, 768] freqs_cos=freqs_cos, # [seqlen, head_dim] freqs_sin=freqs_sin, # [seqlen, head_dim] guidance=guidance_expand[j : j + batch_size], # [1] return_dict=True, )["x"] noise_pred_list.append(noise_pred) noise_pred = torch.cat(noise_pred_list, dim=0) # perform classifier free guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond) # # SkyReels' rescale noise config is omitted for now # if guidance_rescale > 0.0: # # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf # noise_pred = rescale_noise_cfg( # noise_pred, # noise_pred_cond, # guidance_rescale=self.guidance_rescale, # ) # compute the previous noisy sample x_t -> x_t-1 latents = scheduler.step(noise_pred, t, latents, return_dict=False)[0] # update progress bar if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0): if progress_bar is not None: progress_bar.update() # print(p.key_averages().table(sort_by="self_cpu_time_total", row_limit=-1)) # print(p.key_averages().table(sort_by="self_cuda_time_total", row_limit=-1)) latents = latents.detach().cpu() transformer = None clean_memory_on_device(device) # Save samples output_type = args.output_type save_path = args.save_path # if args.save_path_suffix == "" else f"{args.save_path}_{args.save_path_suffix}" os.makedirs(save_path, exist_ok=True) time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S") if output_type == "latent" or output_type == "both": # save latent for i, latent in enumerate(latents): latent_path = f"{save_path}/{time_flag}_{i}_{seeds[i]}_latent.safetensors" if args.no_metadata: metadata = None else: metadata = { "seeds": f"{seeds[i]}", "prompt": f"{args.prompt}", "height": f"{height}", "width": f"{width}", "video_length": f"{video_length}", "infer_steps": f"{num_inference_steps}", "guidance_scale": f"{args.guidance_scale}", "embedded_cfg_scale": f"{args.embedded_cfg_scale}", } if args.negative_prompt is not None: metadata["negative_prompt"] = f"{args.negative_prompt}" sd = {"latent": latent} save_file(sd, latent_path, metadata=metadata) logger.info(f"Latent save to: {latent_path}") if output_type == "video" or output_type == "both": # save video videos = decode_latents(args, latents, device) for i, sample in enumerate(videos): original_name = "" if original_base_names is None else f"_{original_base_names[i]}" sample = sample.unsqueeze(0) video_path = f"{save_path}/{time_flag}_{i}_{seeds[i]}{original_name}.mp4" save_videos_grid(sample, video_path, fps=args.fps) logger.info(f"Sample save to: {video_path}") elif output_type == "images": # save images videos = decode_latents(args, latents, device) for i, sample in enumerate(videos): original_name = "" if original_base_names is None else f"_{original_base_names[i]}" sample = sample.unsqueeze(0) image_name = f"{time_flag}_{i}_{seeds[i]}{original_name}" save_images_grid(sample, save_path, image_name) logger.info(f"Sample images save to: {save_path}/{image_name}") logger.info("Done!") if __name__ == "__main__": main()