# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import math from typing import Optional, Union import torch import torch.nn as nn from torch.utils.checkpoint import checkpoint from accelerate import init_empty_weights import logging from utils.safetensors_utils import MemoryEfficientSafeOpen, load_safetensors logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) from utils.device_utils import clean_memory_on_device from .attention import flash_attention from utils.device_utils import clean_memory_on_device from modules.custom_offloading_utils import ModelOffloader from modules.fp8_optimization_utils import apply_fp8_monkey_patch, optimize_state_dict_with_fp8 __all__ = ["WanModel"] def sinusoidal_embedding_1d(dim, position): # preprocess assert dim % 2 == 0 half = dim // 2 position = position.type(torch.float64) # calculation sinusoid = torch.outer(position, torch.pow(10000, -torch.arange(half).to(position).div(half))) x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) return x # @amp.autocast(enabled=False) # no autocast is needed for rope_apply, because it is already in float64 def rope_params(max_seq_len, dim, theta=10000): assert dim % 2 == 0 freqs = torch.outer(torch.arange(max_seq_len), 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float64).div(dim))) freqs = torch.polar(torch.ones_like(freqs), freqs) return freqs # @amp.autocast(enabled=False) def rope_apply(x, grid_sizes, freqs): device_type = x.device.type with torch.amp.autocast(device_type=device_type, enabled=False): n, c = x.size(2), x.size(3) // 2 # split freqs freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) # loop over samples output = [] for i, (f, h, w) in enumerate(grid_sizes.tolist()): seq_len = f * h * w # precompute multipliers x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(seq_len, n, -1, 2)) freqs_i = torch.cat( [ freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1), ], dim=-1, ).reshape(seq_len, 1, -1) # apply rotary embedding x_i = torch.view_as_real(x_i * freqs_i).flatten(2) x_i = torch.cat([x_i, x[i, seq_len:]]) # append to collection output.append(x_i) return torch.stack(output).float() def calculate_freqs_i(fhw, c, freqs): f, h, w = fhw freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) freqs_i = torch.cat( [ freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1), ], dim=-1, ).reshape(f * h * w, 1, -1) return freqs_i # inplace version of rope_apply def rope_apply_inplace_cached(x, grid_sizes, freqs_list): # with torch.amp.autocast(device_type=device_type, enabled=False): rope_dtype = torch.float64 # float32 does not reduce memory usage significantly n, c = x.size(2), x.size(3) // 2 # loop over samples for i, (f, h, w) in enumerate(grid_sizes.tolist()): seq_len = f * h * w # precompute multipliers x_i = torch.view_as_complex(x[i, :seq_len].to(rope_dtype).reshape(seq_len, n, -1, 2)) freqs_i = freqs_list[i] # apply rotary embedding x_i = torch.view_as_real(x_i * freqs_i).flatten(2) # x_i = torch.cat([x_i, x[i, seq_len:]]) # inplace update x[i, :seq_len] = x_i.to(x.dtype) return x class WanRMSNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.dim = dim self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def forward(self, x): r""" Args: x(Tensor): Shape [B, L, C] """ # return self._norm(x.float()).type_as(x) * self.weight # support fp8 return self._norm(x.float()).type_as(x) * self.weight.to(x.dtype) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) # def forward(self, x): # r""" # Args: # x(Tensor): Shape [B, L, C] # """ # # inplace version, also supports fp8 -> does not have significant performance improvement # original_dtype = x.dtype # x = x.float() # y = x.pow(2).mean(dim=-1, keepdim=True) # y.add_(self.eps) # y.rsqrt_() # x *= y # x = x.to(original_dtype) # x *= self.weight.to(original_dtype) # return x class WanLayerNorm(nn.LayerNorm): def __init__(self, dim, eps=1e-6, elementwise_affine=False): super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps) def forward(self, x): r""" Args: x(Tensor): Shape [B, L, C] """ return super().forward(x.float()).type_as(x) class WanSelfAttention(nn.Module): def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, attn_mode="torch", split_attn=False): assert dim % num_heads == 0 super().__init__() self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.window_size = window_size self.qk_norm = qk_norm self.eps = eps self.attn_mode = attn_mode self.split_attn = split_attn # layers self.q = nn.Linear(dim, dim) self.k = nn.Linear(dim, dim) self.v = nn.Linear(dim, dim) self.o = nn.Linear(dim, dim) self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() def forward(self, x, seq_lens, grid_sizes, freqs): r""" Args: x(Tensor): Shape [B, L, num_heads, C / num_heads] seq_lens(Tensor): Shape [B] grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] """ b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim # # query, key, value function # def qkv_fn(x): # q = self.norm_q(self.q(x)).view(b, s, n, d) # k = self.norm_k(self.k(x)).view(b, s, n, d) # v = self.v(x).view(b, s, n, d) # return q, k, v # q, k, v = qkv_fn(x) # del x # query, key, value function q = self.q(x) k = self.k(x) v = self.v(x) del x q = self.norm_q(q) k = self.norm_k(k) q = q.view(b, s, n, d) k = k.view(b, s, n, d) v = v.view(b, s, n, d) rope_apply_inplace_cached(q, grid_sizes, freqs) rope_apply_inplace_cached(k, grid_sizes, freqs) qkv = [q, k, v] del q, k, v x = flash_attention( qkv, k_lens=seq_lens, window_size=self.window_size, attn_mode=self.attn_mode, split_attn=self.split_attn ) # output x = x.flatten(2) x = self.o(x) return x class WanT2VCrossAttention(WanSelfAttention): def forward(self, x, context, context_lens): r""" Args: x(Tensor): Shape [B, L1, C] context(Tensor): Shape [B, L2, C] context_lens(Tensor): Shape [B] """ b, n, d = x.size(0), self.num_heads, self.head_dim # compute query, key, value # q = self.norm_q(self.q(x)).view(b, -1, n, d) # k = self.norm_k(self.k(context)).view(b, -1, n, d) # v = self.v(context).view(b, -1, n, d) q = self.q(x) del x k = self.k(context) v = self.v(context) del context q = self.norm_q(q) k = self.norm_k(k) q = q.view(b, -1, n, d) k = k.view(b, -1, n, d) v = v.view(b, -1, n, d) # compute attention qkv = [q, k, v] del q, k, v x = flash_attention(qkv, k_lens=context_lens, attn_mode=self.attn_mode, split_attn=self.split_attn) # output x = x.flatten(2) x = self.o(x) return x class WanI2VCrossAttention(WanSelfAttention): def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, attn_mode="torch", split_attn=False): super().__init__(dim, num_heads, window_size, qk_norm, eps, attn_mode, split_attn) self.k_img = nn.Linear(dim, dim) self.v_img = nn.Linear(dim, dim) # self.alpha = nn.Parameter(torch.zeros((1, ))) self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() def forward(self, x, context, context_lens): r""" Args: x(Tensor): Shape [B, L1, C] context(Tensor): Shape [B, L2, C] context_lens(Tensor): Shape [B] """ context_img = context[:, :257] context = context[:, 257:] b, n, d = x.size(0), self.num_heads, self.head_dim # compute query, key, value q = self.q(x) del x q = self.norm_q(q) q = q.view(b, -1, n, d) k = self.k(context) k = self.norm_k(k).view(b, -1, n, d) v = self.v(context).view(b, -1, n, d) del context # compute attention qkv = [q, k, v] del k, v x = flash_attention(qkv, k_lens=context_lens, attn_mode=self.attn_mode, split_attn=self.split_attn) # compute query, key, value k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d) v_img = self.v_img(context_img).view(b, -1, n, d) del context_img # compute attention qkv = [q, k_img, v_img] del q, k_img, v_img img_x = flash_attention(qkv, k_lens=None, attn_mode=self.attn_mode, split_attn=self.split_attn) # output x = x.flatten(2) img_x = img_x.flatten(2) if self.training: x = x + img_x # avoid inplace else: x += img_x del img_x x = self.o(x) return x WAN_CROSSATTENTION_CLASSES = { "t2v_cross_attn": WanT2VCrossAttention, "i2v_cross_attn": WanI2VCrossAttention, } class WanAttentionBlock(nn.Module): def __init__( self, cross_attn_type, dim, ffn_dim, num_heads, window_size=(-1, -1), qk_norm=True, cross_attn_norm=False, eps=1e-6, attn_mode="torch", split_attn=False, ): super().__init__() self.dim = dim self.ffn_dim = ffn_dim self.num_heads = num_heads self.window_size = window_size self.qk_norm = qk_norm self.cross_attn_norm = cross_attn_norm self.eps = eps # layers self.norm1 = WanLayerNorm(dim, eps) self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps, attn_mode, split_attn) self.norm3 = WanLayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity() self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, num_heads, (-1, -1), qk_norm, eps, attn_mode, split_attn) self.norm2 = WanLayerNorm(dim, eps) self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU(approximate="tanh"), nn.Linear(ffn_dim, dim)) # modulation self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) self.gradient_checkpointing = False def enable_gradient_checkpointing(self): self.gradient_checkpointing = True def disable_gradient_checkpointing(self): self.gradient_checkpointing = False def _forward(self, x, e, seq_lens, grid_sizes, freqs, context, context_lens): r""" Args: x(Tensor): Shape [B, L, C] e(Tensor): Shape [B, 6, C] seq_lens(Tensor): Shape [B], length of each sequence in batch grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] """ assert e.dtype == torch.float32 # with amp.autocast(dtype=torch.float32): # e = (self.modulation + e).chunk(6, dim=1) # support fp8 e = self.modulation.to(torch.float32) + e e = e.chunk(6, dim=1) assert e[0].dtype == torch.float32 # self-attention y = self.self_attn(self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes, freqs) # with amp.autocast(dtype=torch.float32): # x = x + y * e[2] x = x + y.to(torch.float32) * e[2] del y # cross-attention & ffn function # def cross_attn_ffn(x, context, context_lens, e): # x += self.cross_attn(self.norm3(x), context, context_lens) # y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3]) # # with amp.autocast(dtype=torch.float32): # # x = x + y * e[5] # x += y.to(torch.float32) * e[5] # return x # x = cross_attn_ffn(x, context, context_lens, e) # x += self.cross_attn(self.norm3(x), context, context_lens) # backward error x = x + self.cross_attn(self.norm3(x), context, context_lens) del context y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3]) x = x + y.to(torch.float32) * e[5] del y return x def forward(self, x, e, seq_lens, grid_sizes, freqs, context, context_lens): if self.training and self.gradient_checkpointing: return checkpoint(self._forward, x, e, seq_lens, grid_sizes, freqs, context, context_lens, use_reentrant=False) return self._forward(x, e, seq_lens, grid_sizes, freqs, context, context_lens) class Head(nn.Module): def __init__(self, dim, out_dim, patch_size, eps=1e-6): super().__init__() self.dim = dim self.out_dim = out_dim self.patch_size = patch_size self.eps = eps # layers out_dim = math.prod(patch_size) * out_dim self.norm = WanLayerNorm(dim, eps) self.head = nn.Linear(dim, out_dim) # modulation self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) def forward(self, x, e): r""" Args: x(Tensor): Shape [B, L1, C] e(Tensor): Shape [B, C] """ assert e.dtype == torch.float32 # with amp.autocast(dtype=torch.float32): # e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1) # x = self.head(self.norm(x) * (1 + e[1]) + e[0]) # support fp8 e = (self.modulation.to(torch.float32) + e.unsqueeze(1)).chunk(2, dim=1) x = self.head(self.norm(x) * (1 + e[1]) + e[0]) return x class MLPProj(torch.nn.Module): def __init__(self, in_dim, out_dim): super().__init__() self.proj = torch.nn.Sequential( torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim), torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim), torch.nn.LayerNorm(out_dim), ) def forward(self, image_embeds): clip_extra_context_tokens = self.proj(image_embeds) return clip_extra_context_tokens class WanModel(nn.Module): # ModelMixin, ConfigMixin): r""" Wan diffusion backbone supporting both text-to-video and image-to-video. """ ignore_for_config = ["patch_size", "cross_attn_norm", "qk_norm", "text_dim", "window_size"] _no_split_modules = ["WanAttentionBlock"] # @register_to_config def __init__( self, model_type="t2v", patch_size=(1, 2, 2), text_len=512, in_dim=16, dim=2048, ffn_dim=8192, freq_dim=256, text_dim=4096, out_dim=16, num_heads=16, num_layers=32, window_size=(-1, -1), qk_norm=True, cross_attn_norm=True, eps=1e-6, attn_mode=None, split_attn=False, ): r""" Initialize the diffusion model backbone. Args: model_type (`str`, *optional*, defaults to 't2v'): Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): 3D patch dimensions for video embedding (t_patch, h_patch, w_patch) text_len (`int`, *optional*, defaults to 512): Fixed length for text embeddings in_dim (`int`, *optional*, defaults to 16): Input video channels (C_in) dim (`int`, *optional*, defaults to 2048): Hidden dimension of the transformer ffn_dim (`int`, *optional*, defaults to 8192): Intermediate dimension in feed-forward network freq_dim (`int`, *optional*, defaults to 256): Dimension for sinusoidal time embeddings text_dim (`int`, *optional*, defaults to 4096): Input dimension for text embeddings out_dim (`int`, *optional*, defaults to 16): Output video channels (C_out) num_heads (`int`, *optional*, defaults to 16): Number of attention heads num_layers (`int`, *optional*, defaults to 32): Number of transformer blocks window_size (`tuple`, *optional*, defaults to (-1, -1)): Window size for local attention (-1 indicates global attention) qk_norm (`bool`, *optional*, defaults to True): Enable query/key normalization cross_attn_norm (`bool`, *optional*, defaults to False): Enable cross-attention normalization eps (`float`, *optional*, defaults to 1e-6): Epsilon value for normalization layers """ super().__init__() assert model_type in ["t2v", "i2v"] self.model_type = model_type self.patch_size = patch_size self.text_len = text_len self.in_dim = in_dim self.dim = dim self.ffn_dim = ffn_dim self.freq_dim = freq_dim self.text_dim = text_dim self.out_dim = out_dim self.num_heads = num_heads self.num_layers = num_layers self.window_size = window_size self.qk_norm = qk_norm self.cross_attn_norm = cross_attn_norm self.eps = eps self.attn_mode = attn_mode if attn_mode is not None else "torch" self.split_attn = split_attn # embeddings self.patch_embedding = nn.Conv3d(in_dim, dim, kernel_size=patch_size, stride=patch_size) self.text_embedding = nn.Sequential(nn.Linear(text_dim, dim), nn.GELU(approximate="tanh"), nn.Linear(dim, dim)) self.time_embedding = nn.Sequential(nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6)) # blocks cross_attn_type = "t2v_cross_attn" if model_type == "t2v" else "i2v_cross_attn" self.blocks = nn.ModuleList( [ WanAttentionBlock( cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, attn_mode, split_attn ) for _ in range(num_layers) ] ) # head self.head = Head(dim, out_dim, patch_size, eps) # buffers (don't use register_buffer otherwise dtype will be changed in to()) assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 d = dim // num_heads self.freqs = torch.cat( [rope_params(1024, d - 4 * (d // 6)), rope_params(1024, 2 * (d // 6)), rope_params(1024, 2 * (d // 6))], dim=1 ) self.freqs_fhw = {} if model_type == "i2v": self.img_emb = MLPProj(1280, dim) # initialize weights self.init_weights() self.gradient_checkpointing = False # offloading self.blocks_to_swap = None self.offloader = None @property def dtype(self): return next(self.parameters()).dtype @property def device(self): return next(self.parameters()).device def fp8_optimization( self, state_dict: dict[str, torch.Tensor], device: torch.device, move_to_device: bool, use_scaled_mm: bool = False ) -> int: """ Optimize the model state_dict with fp8. Args: state_dict (dict[str, torch.Tensor]): The state_dict of the model. device (torch.device): The device to calculate the weight. move_to_device (bool): Whether to move the weight to the device after optimization. """ TARGET_KEYS = ["blocks"] EXCLUDE_KEYS = [ "norm", "patch_embedding", "text_embedding", "time_embedding", "time_projection", "head", "modulation", "img_emb", ] # inplace optimization state_dict = optimize_state_dict_with_fp8(state_dict, device, TARGET_KEYS, EXCLUDE_KEYS, move_to_device=move_to_device) # apply monkey patching apply_fp8_monkey_patch(self, state_dict, use_scaled_mm=use_scaled_mm) return state_dict def enable_gradient_checkpointing(self): self.gradient_checkpointing = True for block in self.blocks: block.enable_gradient_checkpointing() print(f"WanModel: Gradient checkpointing enabled.") def disable_gradient_checkpointing(self): self.gradient_checkpointing = False for block in self.blocks: block.disable_gradient_checkpointing() print(f"WanModel: Gradient checkpointing disabled.") def enable_block_swap(self, blocks_to_swap: int, device: torch.device, supports_backward: bool): self.blocks_to_swap = blocks_to_swap self.num_blocks = len(self.blocks) assert ( self.blocks_to_swap <= self.num_blocks - 1 ), f"Cannot swap more than {self.num_blocks - 1} blocks. Requested {self.blocks_to_swap} blocks to swap." self.offloader = ModelOffloader( "wan_attn_block", self.blocks, self.num_blocks, self.blocks_to_swap, supports_backward, device # , debug=True ) print( f"WanModel: Block swap enabled. Swapping {self.blocks_to_swap} blocks out of {self.num_blocks} blocks. Supports backward: {supports_backward}" ) def switch_block_swap_for_inference(self): if self.blocks_to_swap: self.offloader.set_forward_only(True) self.prepare_block_swap_before_forward() print(f"WanModel: Block swap set to forward only.") def switch_block_swap_for_training(self): if self.blocks_to_swap: self.offloader.set_forward_only(False) self.prepare_block_swap_before_forward() print(f"WanModel: Block swap set to forward and backward.") def move_to_device_except_swap_blocks(self, device: torch.device): # assume model is on cpu. do not move blocks to device to reduce temporary memory usage if self.blocks_to_swap: save_blocks = self.blocks self.blocks = None self.to(device) if self.blocks_to_swap: self.blocks = save_blocks def prepare_block_swap_before_forward(self): if self.blocks_to_swap is None or self.blocks_to_swap == 0: return self.offloader.prepare_block_devices_before_forward(self.blocks) def forward(self, x, t, context, seq_len, clip_fea=None, y=None, skip_block_indices=None): r""" Forward pass through the diffusion model Args: x (List[Tensor]): List of input video tensors, each with shape [C_in, F, H, W] t (Tensor): Diffusion timesteps tensor of shape [B] context (List[Tensor]): List of text embeddings each with shape [L, C] seq_len (`int`): Maximum sequence length for positional encoding clip_fea (Tensor, *optional*): CLIP image features for image-to-video mode y (List[Tensor], *optional*): Conditional video inputs for image-to-video mode, same shape as x Returns: List[Tensor]: List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] """ # remove assertions to work with Fun-Control T2V # if self.model_type == "i2v": # assert clip_fea is not None and y is not None # params device = self.patch_embedding.weight.device if self.freqs.device != device: self.freqs = self.freqs.to(device) if y is not None: x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] y = None # embeddings x = [self.patch_embedding(u.unsqueeze(0)) for u in x] grid_sizes = torch.stack([torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) freqs_list = [] for fhw in grid_sizes: fhw = tuple(fhw.tolist()) if fhw not in self.freqs_fhw: c = self.dim // self.num_heads // 2 self.freqs_fhw[fhw] = calculate_freqs_i(fhw, c, self.freqs) freqs_list.append(self.freqs_fhw[fhw]) x = [u.flatten(2).transpose(1, 2) for u in x] seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) assert seq_lens.max() <= seq_len, f"Sequence length exceeds maximum allowed length {seq_len}. Got {seq_lens.max()}" x = torch.cat([torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in x]) # time embeddings # with amp.autocast(dtype=torch.float32): with torch.amp.autocast(device_type=device.type, dtype=torch.float32): e = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, t).float()) e0 = self.time_projection(e).unflatten(1, (6, self.dim)) assert e.dtype == torch.float32 and e0.dtype == torch.float32 # context context_lens = None if type(context) is list: context = torch.stack([torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) for u in context]) context = self.text_embedding(context) if clip_fea is not None: context_clip = self.img_emb(clip_fea) # bs x 257 x dim context = torch.concat([context_clip, context], dim=1) clip_fea = None context_clip = None # arguments kwargs = dict(e=e0, seq_lens=seq_lens, grid_sizes=grid_sizes, freqs=freqs_list, context=context, context_lens=context_lens) if self.blocks_to_swap: clean_memory_on_device(device) # print(f"x: {x.shape}, e: {e0.shape}, context: {context.shape}, seq_lens: {seq_lens}") for block_idx, block in enumerate(self.blocks): is_block_skipped = skip_block_indices is not None and block_idx in skip_block_indices if self.blocks_to_swap and not is_block_skipped: self.offloader.wait_for_block(block_idx) if not is_block_skipped: x = block(x, **kwargs) if self.blocks_to_swap: self.offloader.submit_move_blocks_forward(self.blocks, block_idx) # head x = self.head(x, e) # unpatchify x = self.unpatchify(x, grid_sizes) return [u.float() for u in x] def unpatchify(self, x, grid_sizes): r""" Reconstruct video tensors from patch embeddings. Args: x (List[Tensor]): List of patchified features, each with shape [L, C_out * prod(patch_size)] grid_sizes (Tensor): Original spatial-temporal grid dimensions before patching, shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) Returns: List[Tensor]: Reconstructed video tensors with shape [C_out, F, H / 8, W / 8] """ c = self.out_dim out = [] for u, v in zip(x, grid_sizes.tolist()): u = u[: math.prod(v)].view(*v, *self.patch_size, c) u = torch.einsum("fhwpqrc->cfphqwr", u) u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)]) out.append(u) return out def init_weights(self): r""" Initialize model parameters using Xavier initialization. """ # basic init for m in self.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.zeros_(m.bias) # init embeddings nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) for m in self.text_embedding.modules(): if isinstance(m, nn.Linear): nn.init.normal_(m.weight, std=0.02) for m in self.time_embedding.modules(): if isinstance(m, nn.Linear): nn.init.normal_(m.weight, std=0.02) # init output layer nn.init.zeros_(self.head.head.weight) def detect_wan_sd_dtype(path: str) -> torch.dtype: # get dtype from model weights with MemoryEfficientSafeOpen(path) as f: keys = set(f.keys()) key1 = "model.diffusion_model.blocks.0.cross_attn.k.weight" # 1.3B key2 = "blocks.0.cross_attn.k.weight" # 14B if key1 in keys: dit_dtype = f.get_tensor(key1).dtype elif key2 in keys: dit_dtype = f.get_tensor(key2).dtype else: raise ValueError(f"Could not find the dtype in the model weights: {path}") logger.info(f"Detected DiT dtype: {dit_dtype}") return dit_dtype def load_wan_model( config: any, device: Union[str, torch.device], dit_path: str, attn_mode: str, split_attn: bool, loading_device: Union[str, torch.device], dit_weight_dtype: Optional[torch.dtype], fp8_scaled: bool = False, ) -> WanModel: # dit_weight_dtype is None for fp8_scaled assert (not fp8_scaled and dit_weight_dtype is not None) or (fp8_scaled and dit_weight_dtype is None) device = torch.device(device) loading_device = torch.device(loading_device) with init_empty_weights(): logger.info(f"Creating WanModel") model = WanModel( model_type="i2v" if config.i2v else "t2v", dim=config.dim, eps=config.eps, ffn_dim=config.ffn_dim, freq_dim=config.freq_dim, in_dim=config.in_dim, num_heads=config.num_heads, num_layers=config.num_layers, out_dim=config.out_dim, text_len=config.text_len, attn_mode=attn_mode, split_attn=split_attn, ) if dit_weight_dtype is not None: model.to(dit_weight_dtype) # if fp8_scaled, load model weights to CPU to reduce VRAM usage. Otherwise, load to the specified device (CPU for block swap or CUDA for others) wan_loading_device = torch.device("cpu") if fp8_scaled else loading_device logger.info(f"Loading DiT model from {dit_path}, device={wan_loading_device}, dtype={dit_weight_dtype}") # load model weights with the specified dtype or as is sd = load_safetensors(dit_path, wan_loading_device, disable_mmap=True, dtype=dit_weight_dtype) # remove "model.diffusion_model." prefix: 1.3B model has this prefix for key in list(sd.keys()): if key.startswith("model.diffusion_model."): sd[key[22:]] = sd.pop(key) if fp8_scaled: # fp8 optimization: calculate on CUDA, move back to CPU if loading_device is CPU (block swap) logger.info(f"Optimizing model weights to fp8. This may take a while.") sd = model.fp8_optimization(sd, device, move_to_device=loading_device.type == "cpu") if loading_device.type != "cpu": # make sure all the model weights are on the loading_device logger.info(f"Moving weights to {loading_device}") for key in sd.keys(): sd[key] = sd[key].to(loading_device) info = model.load_state_dict(sd, strict=True, assign=True) logger.info(f"Loaded DiT model from {dit_path}, info={info}") return model