--- base_model: unsloth/gemma-2-9b tags: - text-generation-inference - transformers - unsloth - gemma2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** takeruh - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-9b This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) ```python # 必要なライブラリを読み込み from unsloth import FastLanguageModel from peft import PeftModel import torch import json from tqdm import tqdm import re # ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)。 model_id = "unsloth/gemma-2-9b" adapter_id = "takeruh/gemma-2-9b-it_lora" HF_TOKEN = "" #@param {type:"string"} # # unslothのFastLanguageModelで元のモデルをロード。 dtype = torch.bfloat16 load_in_4bit = False # モデルとトークナイザのロード model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, ) # 元のモデルにLoRAのアダプタを統合。 model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) # タスクとなるデータの読み込み。 # 事前にデータをアップロードしてください。 datasets = [] # with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: with open("/workspace/elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # # ガベージコレクターでメモリ解放 # gc.collect() # del model torch.cuda.empty_cache() import gc gc.collect() # 学習したモデルを用いてタスクを実行 from tqdm import tqdm # 推論するためにモデルのモードを変更 FastLanguageModel.for_inference(model) # from tqdm import tqdm batch_size = 8 # batch_size = 34 results = [] for i in tqdm(range(0, len(datasets), batch_size)): batch_data = datasets[i:i+batch_size] prompts = [f"### 指示\n{dt['input']}\n### 回答\n" for dt in batch_data] batch_inputs = tokenizer( prompts, return_tensors="pt", padding=True, truncation=True ).to(model.device) # https://huggingface.co/transformers/v2.9.1/main_classes/model.html batch_outputs = model.generate( **batch_inputs, max_new_tokens=350, use_cache=True, do_sample=False, # repetition_penalty=1.2 repetition_penalty=1.5 ) for dt, output_ids in zip(batch_data, batch_outputs): prediction = tokenizer.decode(output_ids, skip_special_tokens=True).split('\n### 回答')[-1] result = {"task_id": dt["task_id"], "input": dt["input"], "output": prediction} results.append(result) # 個々の出力を表示したい場合 tqdm.write(str(result)) # 結果をjsonlで保存。 # ここではadapter_idを元にファイル名を決定しているが、ファイル名は任意で問題なし。 json_file_id = re.sub(".*/", "", adapter_id) # /workspace/llm-jp-3-13b-finetune-outputs.jsonl with open(f"/workspace/{json_file_id}_output2.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ```