File size: 48,553 Bytes
7630c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- asymmetric
- inference-free
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
widget:
- source_sentence: where is the tiber river located in italy
  sentences:
  - Sales taxes in British Columbia On 1 July 2010, the PST and GST were combined
    into the Harmonized Sales Tax (HST) levied according to the provisions of the
    GST. The conversion to HST was controversial. Popular opposition led to a referendum
    on the tax system, the first such referendum in the Commonwealth of Nations, resulting
    in the province reverting to the former PST/GST model on 1 April 2013.
  - 'Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2]

    is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna

    and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it

    is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3]

    It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river

    has achieved lasting fame as the main watercourse of the city of Rome, founded

    on its eastern banks.'
  - 'Water in California California''s limited water supply comes from two main sources:

    surface water, or water that travels or gathers on the ground, like rivers, streams,

    and lakes; and groundwater, which is water that is pumped out from the ground.

    California has also begun producing a small amount of desalinated water, water

    that was once sea water, but has been purified.'
- source_sentence: what kind of car does jay gatsby drive
  sentences:
  - Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide
    to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to
    the city. On the way to New York City, Tom makes a detour at a gas station in
    "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson,
    shares his concern that his wife, Myrtle, may be having an affair. This unnerves
    Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
  - 'Panama Canal The Panama Canal (Spanish: Canal de Panamá) is an artificial 77 km

    (48 mi) waterway in Panama that connects the Atlantic Ocean with the Pacific Ocean.

    The canal cuts across the Isthmus of Panama and is a conduit for maritime trade.

    Canal locks are at each end to lift ships up to Gatun Lake, an artificial lake

    created to reduce the amount of excavation work required for the canal, 26 m (85

    ft) above sea level, and then lower the ships at the other end. The original locks

    are 34 m (110 ft) wide. A third, wider lane of locks was constructed between September

    2007 and May 2016. The expanded canal began commercial operation on June 26, 2016.

    The new locks allow transit of larger, post-Panamax ships, capable of handling

    more cargo.[1]'
  - Solar maximum Predictions of a future maximum's timing and strength are very difficult;
    predictions vary widely. There was a solar maximum in 2000. In 2006 NASA initially
    expected a solar maximum in 2010 or 2011, and thought that it could be the strongest
    since 1958.[3] However, the solar maximum was not declared to have occurred until
    2014, and even then was ranked among the weakest on record.[4]
- source_sentence: who sings if i can dream about you
  sentences:
  - Wesley Jonathan Wesley Jonathan Waples (born October 18, 1978), known professionally
    as Wesley Jonathan, is an American actor. He is best known for his starring role
    as Jamal Grant on the NBC Saturday morning comedy-drama series City Guys, Sweetness
    in the 2005 film Roll Bounce, as well as Burrell "Stamps" Ballentine on TV Land's
    The Soul Man.
  - I Can Dream About You "I Can Dream About You" is a song performed by American
    singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released
    in 1984 as a single from the soundtrack, and included on Hartman's album I Can
    Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  - Blood is thicker than water In modern society, the proverb "blood is thicker than

    water" is used to imply that family relationships are always more important than
    friends.
- source_sentence: who did jesse palmer end up with on the bachelor
  sentences:
  - Jesse Palmer In 2004, Palmer was the first professional athlete to appear on The
    Bachelor television program and the first non-American bachelor, in which he was
    given his choice of eligible single women. He eventually selected Jessica Bowlin,
    but their courtship lasted for only a few months after the end of the show.[19][20]
  - Wave base In seawater, the water particles are moved in a circular orbital motion
    when a wave passes. The radius of the circle of motion for any given water molecule
    decreases exponentially with increasing depth. The wave base, which is the depth
    of influence of a water wave, is about half the wavelength.
  - Do You Remember the First Time? (The Vampire Diaries) Elena, after everyone continues
    to convince her that she had once loved damon decides to run through the magic
    free, mystic falls border. So she does, and she gets glimpses of her and Damon
    but never fully remembers yet that she loves him. Damon pulls her back across
    the line and she asks about a kiss in the rain. He continues to try to get her
    to remember.
- source_sentence: when did the american civil rights movement end
  sentences:
  - 'A Sunday Afternoon on the Island of La Grande Jatte A Sunday Afternoon on the

    Island of La Grande Jatte (French: Un dimanche après-midi à l''Île de la Grande

    Jatte) painted in 1884, is one of Georges Seurat''s most famous works. It is a

    leading example of pointillist technique, executed on a large canvas. Seurat''s

    composition includes a number of Parisians at a park on the banks of the River

    Seine.'
  - Paleolithic Paleolithic humans made tools of stone, bone, and wood.[23] The early
    paleolithic hominins, Australopithecus, were the first users of stone tools. Excavations
    in Gona, Ethiopia have produced thousands of artifacts, and through radioisotopic
    dating and magnetostratigraphy, the sites can be firmly dated to 2.6 million
    years ago. Evidence shows these early hominins intentionally selected raw materials
    with good flaking qualities and chose appropriate sized stones for their needs
    to produce sharp-edged tools for cutting.[29]
  - African-American civil rights movement (1954–1968) The Civil Rights Movement (also
    known as the American civil rights movement, African-American civil rights movement,
    and other terms,[b]) was a human rights movement from 1954–1968 that encompassed
    strategies, groups, and social movements to accomplish its goal of ending legalized
    racial segregation and discrimination laws in the United States. The movement
    secured the legal recognition and federal protection of black Americans in the
    United States Constitution and federal law.
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
co2_eq_emissions:
  emissions: 11.776380098641885
  energy_consumed: 0.030296679972425883
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.096
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Inference-free SPLADE BERT-tiny trained on Natural-Questions tuples
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: dot_accuracy@1
      value: 0.28
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.54
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.68
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.74
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.28
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.18
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.136
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07400000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.28
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.54
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.68
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.74
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5066725139399298
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4317460317460317
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.4432974611015074
      name: Dot Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: dot_accuracy@1
      value: 0.44
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.58
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.58
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.64
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.44
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.3866666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.29600000000000004
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.248
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.043253729866814
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.07701448892020092
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.0882103437254049
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.11441879984163104
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.3142746286394966
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5100555555555555
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.13631231221886872
      name: Dot Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: dot_accuracy@1
      value: 0.28
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.6
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.7
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.78
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.28
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.078
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.27
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.58
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.66
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.72
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5073424422892974
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4506666666666666
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.4421389971626089
      name: Dot Map@100
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: dot_accuracy@1
      value: 0.3333333333333333
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5733333333333334
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.6533333333333333
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7200000000000001
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.3333333333333333
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.25555555555555554
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.19066666666666668
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.13333333333333333
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.197751243288938
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.399004829640067
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.476070114575135
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.524806266613877
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.44276319495624133
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4641560846560846
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.34058292349432834
      name: Dot Map@100
---


# Inference-free SPLADE BERT-tiny trained on Natural-Questions tuples

This is a [Asymmetric Inference-free SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model trained on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

## Model Details

### Model Description
- **Model Type:** Asymmetric Inference-free SPLADE Sparse Encoder
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
- **Training Dataset:**
    - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```

SparseEncoder(

  (0): Asym(

    (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)

    (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 

    (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})

  )

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SparseEncoder



# Download from the 🤗 Hub

model = SparseEncoder("tomaarsen/inference-free-splade-bert-tiny-nq-3e-6-lambda-corpus")

# Run inference

sentences = [

    'when did the american civil rights movement end',

    'African-American civil rights movement (1954–1968) The Civil Rights Movement (also known as the American civil rights movement, African-American civil rights movement, and other terms,[b]) was a human rights movement from 1954–1968 that encompassed strategies, groups, and social movements to accomplish its goal of ending legalized racial segregation and discrimination laws in the United States. The movement secured the legal recognition and federal protection of black Americans in the United States Constitution and federal law.',

    'Paleolithic Paleolithic humans made tools of stone, bone, and wood.[23] The early paleolithic hominins, Australopithecus, were the first users of stone tools. Excavations in Gona, Ethiopia have produced thousands of artifacts, and through radioisotopic dating and magnetostratigraphy, the sites can be firmly dated to 2.6Â\xa0million years ago. Evidence shows these early hominins intentionally selected raw materials with good flaking qualities and chose appropriate sized stones for their needs to produce sharp-edged tools for cutting.[29]',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# (3, 30522)



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)

| Metric           | NanoMSMARCO | NanoNFCorpus | NanoNQ     |
|:-----------------|:------------|:-------------|:-----------|
| dot_accuracy@1   | 0.28        | 0.44         | 0.28       |

| dot_accuracy@3   | 0.54        | 0.58         | 0.6        |
| dot_accuracy@5   | 0.68        | 0.58         | 0.7        |

| dot_accuracy@10  | 0.74        | 0.64         | 0.78       |
| dot_precision@1  | 0.28        | 0.44         | 0.28       |

| dot_precision@3  | 0.18        | 0.3867       | 0.2        |
| dot_precision@5  | 0.136       | 0.296        | 0.14       |

| dot_precision@10 | 0.074       | 0.248        | 0.078      |
| dot_recall@1     | 0.28        | 0.0433       | 0.27       |

| dot_recall@3     | 0.54        | 0.077        | 0.58       |
| dot_recall@5     | 0.68        | 0.0882       | 0.66       |

| dot_recall@10    | 0.74        | 0.1144       | 0.72       |
| **dot_ndcg@10**  | **0.5067**  | **0.3143**   | **0.5073** |

| dot_mrr@10       | 0.4317      | 0.5101       | 0.4507     |

| dot_map@100      | 0.4433      | 0.1363       | 0.4421     |



#### Sparse Nano BEIR



* Dataset: `NanoBEIR_mean`

* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:

  ```json

  {

      "dataset_names": [

          "msmarco",

          "nfcorpus",

          "nq"

      ]

  }

  ```



| Metric           | Value      |

|:-----------------|:-----------|

| dot_accuracy@1   | 0.3333     |

| dot_accuracy@3   | 0.5733     |

| dot_accuracy@5   | 0.6533     |

| dot_accuracy@10  | 0.72       |

| dot_precision@1  | 0.3333     |

| dot_precision@3  | 0.2556     |

| dot_precision@5  | 0.1907     |

| dot_precision@10 | 0.1333     |

| dot_recall@1     | 0.1978     |

| dot_recall@3     | 0.399      |

| dot_recall@5     | 0.4761     |

| dot_recall@10    | 0.5248     |

| **dot_ndcg@10**  | **0.4428** |
| dot_mrr@10       | 0.4642     |

| dot_map@100      | 0.3406     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### natural-questions

* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,000 training samples
* Columns: <code>query</code> and <code>corpus</code>
* Approximate statistics based on the first 1000 samples:
  |         | query              | corpus             |
  |:--------|:-------------------|:-------------------|
  | type    | dict               | dict               |
  | details | <ul><li></li></ul> | <ul><li></li></ul> |
* Samples:
  | query                                                                      | corpus                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  |:---------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>{'query': "who played the father in papa don't preach"}</code>       | <code>{'corpus': 'Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.'}</code>                                                                                                                                                                                                                                                                                                                                                     |
  | <code>{'query': 'where was the location of the battle of hastings'}</code> | <code>{'corpus': 'Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.'}</code> |
  | <code>{'query': 'how many puppies can a dog give birth to'}</code>         | <code>{'corpus': 'Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]'}</code>                                                                                                                                                                                                                                                      |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json

  {'loss': SparseMultipleNegativesRankingLoss(

    (model): SparseEncoder(

      (0): Asym(

        (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)

        (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 

        (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})

      )

    )

    (cross_entropy_loss): CrossEntropyLoss()

  ), 'lambda_corpus': 3e-06, 'lambda_query': 0, 'corpus_regularizer': FlopsLoss(

    (model): SparseEncoder(

      (0): Asym(

        (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)

        (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 

        (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})

      )

    )

  ), 'query_regularizer': None}

  ```

### Evaluation Dataset

#### natural-questions

* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: <code>query</code> and <code>corpus</code>
* Approximate statistics based on the first 1000 samples:
  |         | query              | corpus             |
  |:--------|:-------------------|:-------------------|
  | type    | dict               | dict               |
  | details | <ul><li></li></ul> | <ul><li></li></ul> |
* Samples:
  | query                                                               | corpus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  |:--------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>{'query': 'where is the tiber river located in italy'}</code> | <code>{'corpus': 'Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252\xa0mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709\xa0sq\xa0mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.'}</code> |
  | <code>{'query': 'what kind of car does jay gatsby drive'}</code>    | <code>{'corpus': 'Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby\'s yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.'}</code>                                               |
  | <code>{'query': 'who sings if i can dream about you'}</code>        | <code>{'corpus': 'I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman\'s album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]'}</code>                                                                                                                                                                                                                           |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json

  {'loss': SparseMultipleNegativesRankingLoss(

    (model): SparseEncoder(

      (0): Asym(

        (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)

        (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 

        (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})

      )

    )

    (cross_entropy_loss): CrossEntropyLoss()

  ), 'lambda_corpus': 3e-06, 'lambda_query': 0, 'corpus_regularizer': FlopsLoss(

    (model): SparseEncoder(

      (0): Asym(

        (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)

        (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 

        (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})

      )

    )

  ), 'query_regularizer': None}

  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |

|:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|

| 0.0129 | 20   | 1.5408        | -               | -                       | -                        | -                  | -                         |

| 0.0259 | 40   | 1.4811        | -               | -                       | -                        | -                  | -                         |

| 0.0388 | 60   | 1.2964        | -               | -                       | -                        | -                  | -                         |

| 0.0517 | 80   | 0.9822        | -               | -                       | -                        | -                  | -                         |

| 0.0646 | 100  | 0.6764        | -               | -                       | -                        | -                  | -                         |

| 0.0776 | 120  | 0.547         | -               | -                       | -                        | -                  | -                         |

| 0.0905 | 140  | 0.4755        | -               | -                       | -                        | -                  | -                         |

| 0.1034 | 160  | 0.4212        | -               | -                       | -                        | -                  | -                         |

| 0.1164 | 180  | 0.4562        | -               | -                       | -                        | -                  | -                         |

| 0.1293 | 200  | 0.4057        | 0.3378          | 0.4848                  | 0.3101                   | 0.4742             | 0.4230                    |

| 0.1422 | 220  | 0.3772        | -               | -                       | -                        | -                  | -                         |

| 0.1551 | 240  | 0.3516        | -               | -                       | -                        | -                  | -                         |

| 0.1681 | 260  | 0.3768        | -               | -                       | -                        | -                  | -                         |

| 0.1810 | 280  | 0.3357        | -               | -                       | -                        | -                  | -                         |

| 0.1939 | 300  | 0.3209        | -               | -                       | -                        | -                  | -                         |

| 0.2069 | 320  | 0.3221        | -               | -                       | -                        | -                  | -                         |

| 0.2198 | 340  | 0.3183        | -               | -                       | -                        | -                  | -                         |

| 0.2327 | 360  | 0.3182        | -               | -                       | -                        | -                  | -                         |

| 0.2456 | 380  | 0.333         | -               | -                       | -                        | -                  | -                         |

| 0.2586 | 400  | 0.2946        | 0.2770          | 0.5115                  | 0.3062                   | 0.4842             | 0.4340                    |

| 0.2715 | 420  | 0.295         | -               | -                       | -                        | -                  | -                         |

| 0.2844 | 440  | 0.3019        | -               | -                       | -                        | -                  | -                         |

| 0.2973 | 460  | 0.2882        | -               | -                       | -                        | -                  | -                         |

| 0.3103 | 480  | 0.3203        | -               | -                       | -                        | -                  | -                         |

| 0.3232 | 500  | 0.3215        | -               | -                       | -                        | -                  | -                         |

| 0.3361 | 520  | 0.3018        | -               | -                       | -                        | -                  | -                         |

| 0.3491 | 540  | 0.2918        | -               | -                       | -                        | -                  | -                         |

| 0.3620 | 560  | 0.3365        | -               | -                       | -                        | -                  | -                         |

| 0.3749 | 580  | 0.2847        | -               | -                       | -                        | -                  | -                         |

| 0.3878 | 600  | 0.3382        | 0.2605          | 0.5192                  | 0.3093                   | 0.5002             | 0.4429                    |

| 0.4008 | 620  | 0.2845        | -               | -                       | -                        | -                  | -                         |

| 0.4137 | 640  | 0.2529        | -               | -                       | -                        | -                  | -                         |

| 0.4266 | 660  | 0.2885        | -               | -                       | -                        | -                  | -                         |

| 0.4396 | 680  | 0.2853        | -               | -                       | -                        | -                  | -                         |

| 0.4525 | 700  | 0.2711        | -               | -                       | -                        | -                  | -                         |

| 0.4654 | 720  | 0.2331        | -               | -                       | -                        | -                  | -                         |

| 0.4783 | 740  | 0.2612        | -               | -                       | -                        | -                  | -                         |

| 0.4913 | 760  | 0.2751        | -               | -                       | -                        | -                  | -                         |

| 0.5042 | 780  | 0.2458        | -               | -                       | -                        | -                  | -                         |

| 0.5171 | 800  | 0.2829        | 0.2475          | 0.5167                  | 0.3117                   | 0.5019             | 0.4434                    |

| 0.5301 | 820  | 0.2698        | -               | -                       | -                        | -                  | -                         |

| 0.5430 | 840  | 0.2455        | -               | -                       | -                        | -                  | -                         |

| 0.5559 | 860  | 0.2769        | -               | -                       | -                        | -                  | -                         |

| 0.5688 | 880  | 0.2569        | -               | -                       | -                        | -                  | -                         |

| 0.5818 | 900  | 0.2404        | -               | -                       | -                        | -                  | -                         |

| 0.5947 | 920  | 0.2538        | -               | -                       | -                        | -                  | -                         |

| 0.6076 | 940  | 0.2449        | -               | -                       | -                        | -                  | -                         |

| 0.6206 | 960  | 0.2649        | -               | -                       | -                        | -                  | -                         |

| 0.6335 | 980  | 0.271         | -               | -                       | -                        | -                  | -                         |

| 0.6464 | 1000 | 0.2081        | 0.2382          | 0.5087                  | 0.3114                   | 0.5082             | 0.4427                    |

| 0.6593 | 1020 | 0.2627        | -               | -                       | -                        | -                  | -                         |

| 0.6723 | 1040 | 0.2519        | -               | -                       | -                        | -                  | -                         |

| 0.6852 | 1060 | 0.2463        | -               | -                       | -                        | -                  | -                         |

| 0.6981 | 1080 | 0.2565        | -               | -                       | -                        | -                  | -                         |

| 0.7111 | 1100 | 0.2586        | -               | -                       | -                        | -                  | -                         |

| 0.7240 | 1120 | 0.2521        | -               | -                       | -                        | -                  | -                         |

| 0.7369 | 1140 | 0.2441        | -               | -                       | -                        | -                  | -                         |

| 0.7498 | 1160 | 0.2595        | -               | -                       | -                        | -                  | -                         |

| 0.7628 | 1180 | 0.2612        | -               | -                       | -                        | -                  | -                         |

| 0.7757 | 1200 | 0.2623        | 0.2324          | 0.5019                  | 0.3129                   | 0.5073             | 0.4407                    |

| 0.7886 | 1220 | 0.2393        | -               | -                       | -                        | -                  | -                         |

| 0.8016 | 1240 | 0.2606        | -               | -                       | -                        | -                  | -                         |

| 0.8145 | 1260 | 0.2328        | -               | -                       | -                        | -                  | -                         |

| 0.8274 | 1280 | 0.271         | -               | -                       | -                        | -                  | -                         |

| 0.8403 | 1300 | 0.2556        | -               | -                       | -                        | -                  | -                         |

| 0.8533 | 1320 | 0.2468        | -               | -                       | -                        | -                  | -                         |

| 0.8662 | 1340 | 0.2389        | -               | -                       | -                        | -                  | -                         |

| 0.8791 | 1360 | 0.2354        | -               | -                       | -                        | -                  | -                         |

| 0.8920 | 1380 | 0.2331        | -               | -                       | -                        | -                  | -                         |

| 0.9050 | 1400 | 0.2345        | 0.2303          | 0.5073                  | 0.3139                   | 0.5072             | 0.4428                    |

| 0.9179 | 1420 | 0.2364        | -               | -                       | -                        | -                  | -                         |

| 0.9308 | 1440 | 0.2125        | -               | -                       | -                        | -                  | -                         |

| 0.9438 | 1460 | 0.2634        | -               | -                       | -                        | -                  | -                         |

| 0.9567 | 1480 | 0.259         | -               | -                       | -                        | -                  | -                         |

| 0.9696 | 1500 | 0.2496        | -               | -                       | -                        | -                  | -                         |

| 0.9825 | 1520 | 0.2563        | -               | -                       | -                        | -                  | -                         |

| 0.9955 | 1540 | 0.2475        | -               | -                       | -                        | -                  | -                         |

| -1     | -1   | -             | -               | 0.5067                  | 0.3143                   | 0.5073             | 0.4428                    |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.030 kWh

- **Carbon Emitted**: 0.012 kg of CO2

- **Hours Used**: 0.096 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 4.2.0.dev0

- Transformers: 4.49.0

- PyTorch: 2.6.0+cu124

- Accelerate: 1.5.1

- Datasets: 2.21.0

- Tokenizers: 0.21.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### SpladeLoss

```bibtex

@misc{formal2022distillationhardnegativesampling,

      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},

      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},

      year={2022},

      eprint={2205.04733},

      archivePrefix={arXiv},

      primaryClass={cs.IR},

      url={https://arxiv.org/abs/2205.04733},

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->