File size: 48,553 Bytes
7630c70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- asymmetric
- inference-free
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
widget:
- source_sentence: where is the tiber river located in italy
sentences:
- Sales taxes in British Columbia On 1 July 2010, the PST and GST were combined
into the Harmonized Sales Tax (HST) levied according to the provisions of the
GST. The conversion to HST was controversial. Popular opposition led to a referendum
on the tax system, the first such referendum in the Commonwealth of Nations, resulting
in the province reverting to the former PST/GST model on 1 April 2013.
- 'Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2]
is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna
and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it
is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3]
It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river
has achieved lasting fame as the main watercourse of the city of Rome, founded
on its eastern banks.'
- 'Water in California California''s limited water supply comes from two main sources:
surface water, or water that travels or gathers on the ground, like rivers, streams,
and lakes; and groundwater, which is water that is pumped out from the ground.
California has also begun producing a small amount of desalinated water, water
that was once sea water, but has been purified.'
- source_sentence: what kind of car does jay gatsby drive
sentences:
- Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide
to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to
the city. On the way to New York City, Tom makes a detour at a gas station in
"the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson,
shares his concern that his wife, Myrtle, may be having an affair. This unnerves
Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
- 'Panama Canal The Panama Canal (Spanish: Canal de Panamá) is an artificial 77 km
(48 mi) waterway in Panama that connects the Atlantic Ocean with the Pacific Ocean.
The canal cuts across the Isthmus of Panama and is a conduit for maritime trade.
Canal locks are at each end to lift ships up to Gatun Lake, an artificial lake
created to reduce the amount of excavation work required for the canal, 26 m (85
ft) above sea level, and then lower the ships at the other end. The original locks
are 34 m (110 ft) wide. A third, wider lane of locks was constructed between September
2007 and May 2016. The expanded canal began commercial operation on June 26, 2016.
The new locks allow transit of larger, post-Panamax ships, capable of handling
more cargo.[1]'
- Solar maximum Predictions of a future maximum's timing and strength are very difficult;
predictions vary widely. There was a solar maximum in 2000. In 2006 NASA initially
expected a solar maximum in 2010 or 2011, and thought that it could be the strongest
since 1958.[3] However, the solar maximum was not declared to have occurred until
2014, and even then was ranked among the weakest on record.[4]
- source_sentence: who sings if i can dream about you
sentences:
- Wesley Jonathan Wesley Jonathan Waples (born October 18, 1978), known professionally
as Wesley Jonathan, is an American actor. He is best known for his starring role
as Jamal Grant on the NBC Saturday morning comedy-drama series City Guys, Sweetness
in the 2005 film Roll Bounce, as well as Burrell "Stamps" Ballentine on TV Land's
The Soul Man.
- I Can Dream About You "I Can Dream About You" is a song performed by American
singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released
in 1984 as a single from the soundtrack, and included on Hartman's album I Can
Dream About You, it reached number 6 on the Billboard Hot 100.[1]
- Blood is thicker than water In modern society, the proverb "blood is thicker than
water" is used to imply that family relationships are always more important than
friends.
- source_sentence: who did jesse palmer end up with on the bachelor
sentences:
- Jesse Palmer In 2004, Palmer was the first professional athlete to appear on The
Bachelor television program and the first non-American bachelor, in which he was
given his choice of eligible single women. He eventually selected Jessica Bowlin,
but their courtship lasted for only a few months after the end of the show.[19][20]
- Wave base In seawater, the water particles are moved in a circular orbital motion
when a wave passes. The radius of the circle of motion for any given water molecule
decreases exponentially with increasing depth. The wave base, which is the depth
of influence of a water wave, is about half the wavelength.
- Do You Remember the First Time? (The Vampire Diaries) Elena, after everyone continues
to convince her that she had once loved damon decides to run through the magic
free, mystic falls border. So she does, and she gets glimpses of her and Damon
but never fully remembers yet that she loves him. Damon pulls her back across
the line and she asks about a kiss in the rain. He continues to try to get her
to remember.
- source_sentence: when did the american civil rights movement end
sentences:
- 'A Sunday Afternoon on the Island of La Grande Jatte A Sunday Afternoon on the
Island of La Grande Jatte (French: Un dimanche après-midi à l''Île de la Grande
Jatte) painted in 1884, is one of Georges Seurat''s most famous works. It is a
leading example of pointillist technique, executed on a large canvas. Seurat''s
composition includes a number of Parisians at a park on the banks of the River
Seine.'
- Paleolithic Paleolithic humans made tools of stone, bone, and wood.[23] The early
paleolithic hominins, Australopithecus, were the first users of stone tools. Excavations
in Gona, Ethiopia have produced thousands of artifacts, and through radioisotopic
dating and magnetostratigraphy, the sites can be firmly dated to 2.6Â million
years ago. Evidence shows these early hominins intentionally selected raw materials
with good flaking qualities and chose appropriate sized stones for their needs
to produce sharp-edged tools for cutting.[29]
- African-American civil rights movement (1954–1968) The Civil Rights Movement (also
known as the American civil rights movement, African-American civil rights movement,
and other terms,[b]) was a human rights movement from 1954–1968 that encompassed
strategies, groups, and social movements to accomplish its goal of ending legalized
racial segregation and discrimination laws in the United States. The movement
secured the legal recognition and federal protection of black Americans in the
United States Constitution and federal law.
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
co2_eq_emissions:
emissions: 11.776380098641885
energy_consumed: 0.030296679972425883
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.096
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Inference-free SPLADE BERT-tiny trained on Natural-Questions tuples
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.28
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.68
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.74
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.28
name: Dot Precision@1
- type: dot_precision@3
value: 0.18
name: Dot Precision@3
- type: dot_precision@5
value: 0.136
name: Dot Precision@5
- type: dot_precision@10
value: 0.07400000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.28
name: Dot Recall@1
- type: dot_recall@3
value: 0.54
name: Dot Recall@3
- type: dot_recall@5
value: 0.68
name: Dot Recall@5
- type: dot_recall@10
value: 0.74
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5066725139399298
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4317460317460317
name: Dot Mrr@10
- type: dot_map@100
value: 0.4432974611015074
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.44
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.58
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.58
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.64
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.44
name: Dot Precision@1
- type: dot_precision@3
value: 0.3866666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.29600000000000004
name: Dot Precision@5
- type: dot_precision@10
value: 0.248
name: Dot Precision@10
- type: dot_recall@1
value: 0.043253729866814
name: Dot Recall@1
- type: dot_recall@3
value: 0.07701448892020092
name: Dot Recall@3
- type: dot_recall@5
value: 0.0882103437254049
name: Dot Recall@5
- type: dot_recall@10
value: 0.11441879984163104
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3142746286394966
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5100555555555555
name: Dot Mrr@10
- type: dot_map@100
value: 0.13631231221886872
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.28
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.78
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.28
name: Dot Precision@1
- type: dot_precision@3
value: 0.2
name: Dot Precision@3
- type: dot_precision@5
value: 0.14
name: Dot Precision@5
- type: dot_precision@10
value: 0.078
name: Dot Precision@10
- type: dot_recall@1
value: 0.27
name: Dot Recall@1
- type: dot_recall@3
value: 0.58
name: Dot Recall@3
- type: dot_recall@5
value: 0.66
name: Dot Recall@5
- type: dot_recall@10
value: 0.72
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5073424422892974
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4506666666666666
name: Dot Mrr@10
- type: dot_map@100
value: 0.4421389971626089
name: Dot Map@100
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.3333333333333333
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5733333333333334
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6533333333333333
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7200000000000001
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3333333333333333
name: Dot Precision@1
- type: dot_precision@3
value: 0.25555555555555554
name: Dot Precision@3
- type: dot_precision@5
value: 0.19066666666666668
name: Dot Precision@5
- type: dot_precision@10
value: 0.13333333333333333
name: Dot Precision@10
- type: dot_recall@1
value: 0.197751243288938
name: Dot Recall@1
- type: dot_recall@3
value: 0.399004829640067
name: Dot Recall@3
- type: dot_recall@5
value: 0.476070114575135
name: Dot Recall@5
- type: dot_recall@10
value: 0.524806266613877
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.44276319495624133
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4641560846560846
name: Dot Mrr@10
- type: dot_map@100
value: 0.34058292349432834
name: Dot Map@100
---
# Inference-free SPLADE BERT-tiny trained on Natural-Questions tuples
This is a [Asymmetric Inference-free SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model trained on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
## Model Details
### Model Description
- **Model Type:** Asymmetric Inference-free SPLADE Sparse Encoder
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
- **Training Dataset:**
- [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
### Full Model Architecture
```
SparseEncoder(
(0): Asym(
(query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
(corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
(corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/inference-free-splade-bert-tiny-nq-3e-6-lambda-corpus")
# Run inference
sentences = [
'when did the american civil rights movement end',
'African-American civil rights movement (1954–1968) The Civil Rights Movement (also known as the American civil rights movement, African-American civil rights movement, and other terms,[b]) was a human rights movement from 1954–1968 that encompassed strategies, groups, and social movements to accomplish its goal of ending legalized racial segregation and discrimination laws in the United States. The movement secured the legal recognition and federal protection of black Americans in the United States Constitution and federal law.',
'Paleolithic Paleolithic humans made tools of stone, bone, and wood.[23] The early paleolithic hominins, Australopithecus, were the first users of stone tools. Excavations in Gona, Ethiopia have produced thousands of artifacts, and through radioisotopic dating and magnetostratigraphy, the sites can be firmly dated to 2.6Â\xa0million years ago. Evidence shows these early hominins intentionally selected raw materials with good flaking qualities and chose appropriate sized stones for their needs to produce sharp-edged tools for cutting.[29]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Sparse Information Retrieval
* Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
| Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ |
|:-----------------|:------------|:-------------|:-----------|
| dot_accuracy@1 | 0.28 | 0.44 | 0.28 |
| dot_accuracy@3 | 0.54 | 0.58 | 0.6 |
| dot_accuracy@5 | 0.68 | 0.58 | 0.7 |
| dot_accuracy@10 | 0.74 | 0.64 | 0.78 |
| dot_precision@1 | 0.28 | 0.44 | 0.28 |
| dot_precision@3 | 0.18 | 0.3867 | 0.2 |
| dot_precision@5 | 0.136 | 0.296 | 0.14 |
| dot_precision@10 | 0.074 | 0.248 | 0.078 |
| dot_recall@1 | 0.28 | 0.0433 | 0.27 |
| dot_recall@3 | 0.54 | 0.077 | 0.58 |
| dot_recall@5 | 0.68 | 0.0882 | 0.66 |
| dot_recall@10 | 0.74 | 0.1144 | 0.72 |
| **dot_ndcg@10** | **0.5067** | **0.3143** | **0.5073** |
| dot_mrr@10 | 0.4317 | 0.5101 | 0.4507 |
| dot_map@100 | 0.4433 | 0.1363 | 0.4421 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
]
}
```
| Metric | Value |
|:-----------------|:-----------|
| dot_accuracy@1 | 0.3333 |
| dot_accuracy@3 | 0.5733 |
| dot_accuracy@5 | 0.6533 |
| dot_accuracy@10 | 0.72 |
| dot_precision@1 | 0.3333 |
| dot_precision@3 | 0.2556 |
| dot_precision@5 | 0.1907 |
| dot_precision@10 | 0.1333 |
| dot_recall@1 | 0.1978 |
| dot_recall@3 | 0.399 |
| dot_recall@5 | 0.4761 |
| dot_recall@10 | 0.5248 |
| **dot_ndcg@10** | **0.4428** |
| dot_mrr@10 | 0.4642 |
| dot_map@100 | 0.3406 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,000 training samples
* Columns: <code>query</code> and <code>corpus</code>
* Approximate statistics based on the first 1000 samples:
| | query | corpus |
|:--------|:-------------------|:-------------------|
| type | dict | dict |
| details | <ul><li></li></ul> | <ul><li></li></ul> |
* Samples:
| query | corpus |
|:---------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>{'query': "who played the father in papa don't preach"}</code> | <code>{'corpus': 'Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.'}</code> |
| <code>{'query': 'where was the location of the battle of hastings'}</code> | <code>{'corpus': 'Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.'}</code> |
| <code>{'query': 'how many puppies can a dog give birth to'}</code> | <code>{'corpus': 'Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]'}</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
```json
{'loss': SparseMultipleNegativesRankingLoss(
(model): SparseEncoder(
(0): Asym(
(query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
(corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
(corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
)
(cross_entropy_loss): CrossEntropyLoss()
), 'lambda_corpus': 3e-06, 'lambda_query': 0, 'corpus_regularizer': FlopsLoss(
(model): SparseEncoder(
(0): Asym(
(query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
(corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
(corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
)
), 'query_regularizer': None}
```
### Evaluation Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: <code>query</code> and <code>corpus</code>
* Approximate statistics based on the first 1000 samples:
| | query | corpus |
|:--------|:-------------------|:-------------------|
| type | dict | dict |
| details | <ul><li></li></ul> | <ul><li></li></ul> |
* Samples:
| query | corpus |
|:--------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>{'query': 'where is the tiber river located in italy'}</code> | <code>{'corpus': 'Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252\xa0mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709\xa0sq\xa0mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.'}</code> |
| <code>{'query': 'what kind of car does jay gatsby drive'}</code> | <code>{'corpus': 'Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby\'s yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.'}</code> |
| <code>{'query': 'who sings if i can dream about you'}</code> | <code>{'corpus': 'I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman\'s album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]'}</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
```json
{'loss': SparseMultipleNegativesRankingLoss(
(model): SparseEncoder(
(0): Asym(
(query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
(corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
(corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
)
(cross_entropy_loss): CrossEntropyLoss()
), 'lambda_corpus': 3e-06, 'lambda_query': 0, 'corpus_regularizer': FlopsLoss(
(model): SparseEncoder(
(0): Asym(
(query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
(corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
(corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
)
), 'query_regularizer': None}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|
| 0.0129 | 20 | 1.5408 | - | - | - | - | - |
| 0.0259 | 40 | 1.4811 | - | - | - | - | - |
| 0.0388 | 60 | 1.2964 | - | - | - | - | - |
| 0.0517 | 80 | 0.9822 | - | - | - | - | - |
| 0.0646 | 100 | 0.6764 | - | - | - | - | - |
| 0.0776 | 120 | 0.547 | - | - | - | - | - |
| 0.0905 | 140 | 0.4755 | - | - | - | - | - |
| 0.1034 | 160 | 0.4212 | - | - | - | - | - |
| 0.1164 | 180 | 0.4562 | - | - | - | - | - |
| 0.1293 | 200 | 0.4057 | 0.3378 | 0.4848 | 0.3101 | 0.4742 | 0.4230 |
| 0.1422 | 220 | 0.3772 | - | - | - | - | - |
| 0.1551 | 240 | 0.3516 | - | - | - | - | - |
| 0.1681 | 260 | 0.3768 | - | - | - | - | - |
| 0.1810 | 280 | 0.3357 | - | - | - | - | - |
| 0.1939 | 300 | 0.3209 | - | - | - | - | - |
| 0.2069 | 320 | 0.3221 | - | - | - | - | - |
| 0.2198 | 340 | 0.3183 | - | - | - | - | - |
| 0.2327 | 360 | 0.3182 | - | - | - | - | - |
| 0.2456 | 380 | 0.333 | - | - | - | - | - |
| 0.2586 | 400 | 0.2946 | 0.2770 | 0.5115 | 0.3062 | 0.4842 | 0.4340 |
| 0.2715 | 420 | 0.295 | - | - | - | - | - |
| 0.2844 | 440 | 0.3019 | - | - | - | - | - |
| 0.2973 | 460 | 0.2882 | - | - | - | - | - |
| 0.3103 | 480 | 0.3203 | - | - | - | - | - |
| 0.3232 | 500 | 0.3215 | - | - | - | - | - |
| 0.3361 | 520 | 0.3018 | - | - | - | - | - |
| 0.3491 | 540 | 0.2918 | - | - | - | - | - |
| 0.3620 | 560 | 0.3365 | - | - | - | - | - |
| 0.3749 | 580 | 0.2847 | - | - | - | - | - |
| 0.3878 | 600 | 0.3382 | 0.2605 | 0.5192 | 0.3093 | 0.5002 | 0.4429 |
| 0.4008 | 620 | 0.2845 | - | - | - | - | - |
| 0.4137 | 640 | 0.2529 | - | - | - | - | - |
| 0.4266 | 660 | 0.2885 | - | - | - | - | - |
| 0.4396 | 680 | 0.2853 | - | - | - | - | - |
| 0.4525 | 700 | 0.2711 | - | - | - | - | - |
| 0.4654 | 720 | 0.2331 | - | - | - | - | - |
| 0.4783 | 740 | 0.2612 | - | - | - | - | - |
| 0.4913 | 760 | 0.2751 | - | - | - | - | - |
| 0.5042 | 780 | 0.2458 | - | - | - | - | - |
| 0.5171 | 800 | 0.2829 | 0.2475 | 0.5167 | 0.3117 | 0.5019 | 0.4434 |
| 0.5301 | 820 | 0.2698 | - | - | - | - | - |
| 0.5430 | 840 | 0.2455 | - | - | - | - | - |
| 0.5559 | 860 | 0.2769 | - | - | - | - | - |
| 0.5688 | 880 | 0.2569 | - | - | - | - | - |
| 0.5818 | 900 | 0.2404 | - | - | - | - | - |
| 0.5947 | 920 | 0.2538 | - | - | - | - | - |
| 0.6076 | 940 | 0.2449 | - | - | - | - | - |
| 0.6206 | 960 | 0.2649 | - | - | - | - | - |
| 0.6335 | 980 | 0.271 | - | - | - | - | - |
| 0.6464 | 1000 | 0.2081 | 0.2382 | 0.5087 | 0.3114 | 0.5082 | 0.4427 |
| 0.6593 | 1020 | 0.2627 | - | - | - | - | - |
| 0.6723 | 1040 | 0.2519 | - | - | - | - | - |
| 0.6852 | 1060 | 0.2463 | - | - | - | - | - |
| 0.6981 | 1080 | 0.2565 | - | - | - | - | - |
| 0.7111 | 1100 | 0.2586 | - | - | - | - | - |
| 0.7240 | 1120 | 0.2521 | - | - | - | - | - |
| 0.7369 | 1140 | 0.2441 | - | - | - | - | - |
| 0.7498 | 1160 | 0.2595 | - | - | - | - | - |
| 0.7628 | 1180 | 0.2612 | - | - | - | - | - |
| 0.7757 | 1200 | 0.2623 | 0.2324 | 0.5019 | 0.3129 | 0.5073 | 0.4407 |
| 0.7886 | 1220 | 0.2393 | - | - | - | - | - |
| 0.8016 | 1240 | 0.2606 | - | - | - | - | - |
| 0.8145 | 1260 | 0.2328 | - | - | - | - | - |
| 0.8274 | 1280 | 0.271 | - | - | - | - | - |
| 0.8403 | 1300 | 0.2556 | - | - | - | - | - |
| 0.8533 | 1320 | 0.2468 | - | - | - | - | - |
| 0.8662 | 1340 | 0.2389 | - | - | - | - | - |
| 0.8791 | 1360 | 0.2354 | - | - | - | - | - |
| 0.8920 | 1380 | 0.2331 | - | - | - | - | - |
| 0.9050 | 1400 | 0.2345 | 0.2303 | 0.5073 | 0.3139 | 0.5072 | 0.4428 |
| 0.9179 | 1420 | 0.2364 | - | - | - | - | - |
| 0.9308 | 1440 | 0.2125 | - | - | - | - | - |
| 0.9438 | 1460 | 0.2634 | - | - | - | - | - |
| 0.9567 | 1480 | 0.259 | - | - | - | - | - |
| 0.9696 | 1500 | 0.2496 | - | - | - | - | - |
| 0.9825 | 1520 | 0.2563 | - | - | - | - | - |
| 0.9955 | 1540 | 0.2475 | - | - | - | - | - |
| -1 | -1 | - | - | 0.5067 | 0.3143 | 0.5073 | 0.4428 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.030 kWh
- **Carbon Emitted**: 0.012 kg of CO2
- **Hours Used**: 0.096 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |