|
|
|
|
|
import torch
|
|
from typing import Tuple
|
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
|
"""
|
|
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
|
|
|
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim'
|
|
and the end index 'end'. The 'theta' parameter scales the frequencies.
|
|
The returned tensor contains complex values in complex64 data type.
|
|
|
|
Args:
|
|
dim (int): Dimension of the frequency tensor.
|
|
end (int): End index for precomputing frequencies.
|
|
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
|
|
|
|
Returns:
|
|
torch.Tensor: Precomputed frequency tensor with complex exponentials.
|
|
"""
|
|
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
|
t = torch.arange(end, device=freqs.device)
|
|
freqs = torch.outer(t, freqs).float()
|
|
return torch.polar(torch.ones_like(freqs), freqs)
|
|
|
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
|
assert freqs_cis.shape[1:] == (x.shape[1], x.shape[-1])
|
|
return freqs_cis.contiguous().unsqueeze(2)
|
|
|
|
|
|
def apply_rotary_emb(
|
|
xq: torch.Tensor,
|
|
xk: torch.Tensor,
|
|
freqs_cis: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Apply rotary embeddings to input tensors using the given frequency tensor.
|
|
|
|
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
|
|
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
|
|
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
|
|
returned as real tensors.
|
|
|
|
Args:
|
|
xq (torch.Tensor): Query tensor to apply rotary embeddings.
|
|
xk (torch.Tensor): Key tensor to apply rotary embeddings.
|
|
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex exponentials.
|
|
|
|
Returns:
|
|
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
|
"""
|
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
|
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
|
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
|
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
|
return xq_out.type_as(xq), xk_out.type_as(xk)
|
|
|