Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,65 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- jondurbin/airoboros-3.2
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: transformers
|
8 |
+
base_model: h2oai/h2o-danube2-1.8b-base
|
9 |
+
---
|
10 |
+
|
11 |
+
# h2o-danube2 with ChatML template
|
12 |
+
|
13 |
+
This is a [BAdam fine-tuned](https://arxiv.org/abs/2404.02827 "BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models
|
14 |
+
") danube2 base model. It uses the ChatML template and was trained on the [Airoboros-3.2](https://huggingface.co/datasets/jondurbin/airoboros-3.2) dataset from [jondurbin](https://huggingface.co/jondurbin).
|
15 |
+
|
16 |
+
LLama-Factory was used with the config below:
|
17 |
+
|
18 |
+
```yaml
|
19 |
+
### model
|
20 |
+
model_name_or_path: /home/trolle/Documents/Projects/trollek/danube2/base/danube2-base-chatml
|
21 |
+
|
22 |
+
### method
|
23 |
+
stage: sft
|
24 |
+
do_train: true
|
25 |
+
finetuning_type: full
|
26 |
+
use_badam: true
|
27 |
+
badam_switch_mode: ascending
|
28 |
+
badam_switch_interval: 50
|
29 |
+
badam_verbose: 1
|
30 |
+
badam_start_block: 13
|
31 |
+
badam_mask_mode: scatter
|
32 |
+
seed: 314
|
33 |
+
|
34 |
+
### dataset
|
35 |
+
dataset: airoboros32
|
36 |
+
template: ninja_chatml
|
37 |
+
cutoff_len: 8192
|
38 |
+
overwrite_cache: false
|
39 |
+
preprocessing_num_workers: 12
|
40 |
+
|
41 |
+
### output
|
42 |
+
output_dir: /home/trolle/Documents/Projects/trollek/danube2/base/airoboros32-chatml-badam
|
43 |
+
logging_steps: 5
|
44 |
+
save_steps: 1
|
45 |
+
save_strategy: epoch
|
46 |
+
plot_loss: true
|
47 |
+
overwrite_output_dir: false
|
48 |
+
|
49 |
+
### train
|
50 |
+
per_device_train_batch_size: 2
|
51 |
+
gradient_accumulation_steps: 8
|
52 |
+
learning_rate: 0.00001
|
53 |
+
num_train_epochs: 2
|
54 |
+
lr_scheduler_type: cosine
|
55 |
+
warmup_ratio: 0.01
|
56 |
+
pure_bf16: true
|
57 |
+
flash_attn: fa2
|
58 |
+
|
59 |
+
### eval
|
60 |
+
val_size: 0.01
|
61 |
+
per_device_eval_batch_size: 1
|
62 |
+
eval_strategy: steps
|
63 |
+
eval_steps: 1000
|
64 |
+
```
|
65 |
+
|