File size: 5,738 Bytes
eb92861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c28a1e0
 
 
eb92861
c28a1e0
 
 
 
 
eb92861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c28a1e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb92861
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
base_model: mosaicml/mpt-7b-instruct
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: MPT_1000_STEPS_1e7_rate_03_beta_DPO
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MPT_1000_STEPS_1e7_rate_03_beta_DPO

This model is a fine-tuned version of [mosaicml/mpt-7b-instruct](https://huggingface.co/mosaicml/mpt-7b-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6919
- Rewards/chosen: -0.0230
- Rewards/rejected: -0.0291
- Rewards/accuracies: 0.5275
- Rewards/margins: 0.0061
- Logps/rejected: -21.6156
- Logps/chosen: -20.8382
- Logits/rejected: 14.2213
- Logits/chosen: 14.2239

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6958        | 0.05  | 50   | 0.6969          | -0.0103        | -0.0064          | 0.4791             | -0.0040         | -21.5702       | -20.8128     | 14.2683         | 14.2709       |
| 0.6948        | 0.1   | 100  | 0.6966          | -0.0023        | 0.0014           | 0.5077             | -0.0037         | -21.5546       | -20.7968     | 14.2571         | 14.2597       |
| 0.6971        | 0.15  | 150  | 0.7007          | -0.0051        | 0.0067           | 0.4681             | -0.0117         | -21.5441       | -20.8024     | 14.2475         | 14.2501       |
| 0.6891        | 0.2   | 200  | 0.6943          | 0.0187         | 0.0174           | 0.4923             | 0.0013          | -21.5227       | -20.7548     | 14.2452         | 14.2478       |
| 0.6906        | 0.24  | 250  | 0.6922          | 0.0036         | -0.0018          | 0.4747             | 0.0054          | -21.5609       | -20.7850     | 14.2395         | 14.2421       |
| 0.6865        | 0.29  | 300  | 0.6942          | 0.0038         | 0.0023           | 0.4857             | 0.0015          | -21.5528       | -20.7845     | 14.2393         | 14.2419       |
| 0.7058        | 0.34  | 350  | 0.6939          | -0.0025        | -0.0045          | 0.5055             | 0.0020          | -21.5664       | -20.7971     | 14.2533         | 14.2559       |
| 0.6817        | 0.39  | 400  | 0.6918          | -0.0255        | -0.0318          | 0.5143             | 0.0063          | -21.6210       | -20.8431     | 14.2343         | 14.2369       |
| 0.6726        | 0.44  | 450  | 0.6902          | -0.0203        | -0.0301          | 0.5582             | 0.0099          | -21.6177       | -20.8327     | 14.2287         | 14.2313       |
| 0.6927        | 0.49  | 500  | 0.6903          | -0.0159        | -0.0254          | 0.5209             | 0.0096          | -21.6083       | -20.8239     | 14.2329         | 14.2355       |
| 0.6728        | 0.54  | 550  | 0.6905          | -0.0252        | -0.0342          | 0.5297             | 0.0089          | -21.6258       | -20.8426     | 14.2305         | 14.2331       |
| 0.6733        | 0.59  | 600  | 0.6877          | -0.0158        | -0.0305          | 0.5341             | 0.0147          | -21.6184       | -20.8237     | 14.2330         | 14.2356       |
| 0.6937        | 0.64  | 650  | 0.6916          | -0.0222        | -0.0293          | 0.5341             | 0.0071          | -21.6161       | -20.8365     | 14.2242         | 14.2268       |
| 0.6771        | 0.68  | 700  | 0.6921          | -0.0234        | -0.0294          | 0.5231             | 0.0060          | -21.6163       | -20.8391     | 14.2289         | 14.2315       |
| 0.6874        | 0.73  | 750  | 0.6916          | -0.0219        | -0.0286          | 0.5121             | 0.0067          | -21.6147       | -20.8361     | 14.2292         | 14.2317       |
| 0.6772        | 0.78  | 800  | 0.6888          | -0.0187        | -0.0313          | 0.5473             | 0.0127          | -21.6201       | -20.8295     | 14.2308         | 14.2334       |
| 0.7033        | 0.83  | 850  | 0.6886          | -0.0163        | -0.0294          | 0.5297             | 0.0131          | -21.6163       | -20.8248     | 14.2220         | 14.2245       |
| 0.6772        | 0.88  | 900  | 0.6894          | -0.0217        | -0.0330          | 0.5297             | 0.0113          | -21.6235       | -20.8357     | 14.2227         | 14.2253       |
| 0.696         | 0.93  | 950  | 0.6918          | -0.0229        | -0.0293          | 0.5275             | 0.0064          | -21.6160       | -20.8380     | 14.2213         | 14.2239       |
| 0.6881        | 0.98  | 1000 | 0.6919          | -0.0230        | -0.0291          | 0.5275             | 0.0061          | -21.6156       | -20.8382     | 14.2213         | 14.2239       |


### Framework versions

- Transformers 4.39.1
- Pytorch 2.0.0+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2